Skip to main content
Log in

Formation of central cleavage products from lycopene analogues under liposomal suspension

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The decrease of lycopene analogues (60 μM) and the formation of its central cleavage products were quantitatively evaluated during the course of autoxidation at 37°C for 72 h in liposomal suspension. The amounts of central cleavage as carbonyl compounds, acycloretinal, phytofluenal (from ζ-carotene), and phytofluenal (from phytofluene), reached maxima of 36.7, 26.5, and 23.6 nM after 48 h incubation, respectively, while carboxyl cleavage, acycloretinoic acid, 4,5-didehydrogeranyl geranoic acid (from ζ-carotene), and 4,5-didehydrogeranyl geranoic acid (from phytofluene) were reached to 4.6, 3.8, and 3.3 nM at 48 h incubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giovannucci E, Ascherio A, Rimn EB, Stampfer MJ, Colditz GA, Willett WC. Intake of caroteroids and retinol in relation to risk of prostate cancer. J. Natl. Cancer 87: 1767–1776 (1995)

    Article  CAS  Google Scholar 

  2. Gann PH, Ma J, Giovannucci E, Willett W, Sacks FM, Hennekens CH, Stampfer MJ. Lower prostate cancer risk in men with elevated plasma lycopene levels: Result of a prospective analysis. Cancer Res. 59: 1225–1230 (1999)

    CAS  Google Scholar 

  3. Klipstein-Grobusch K, Launer LJ, Geleijnse JM, Boeing H, Hofman A, Witteman CM. Serum carotenoids and atherosclerosis-The Rotterdam study. Arteriosclerosis 148: 49–56 (2000)

    Article  CAS  Google Scholar 

  4. Suganuma H, Inakuma T. Protective effect of dietary tomato against endotherial dysfunction in hycholesterolemic mice. Biosci. Biotech. Biochem. 63: 78–82 (1999)

    Article  CAS  Google Scholar 

  5. Jain CK, Agarwal S, Rao AV. The effect of diary lycopene on bioavailability, tissue distribution, in vivo antioxidant properties, and colonic preneoplasia in rats. Nutr. Res. 19: 1383–1391 (1999)

    Article  CAS  Google Scholar 

  6. Arimochi H, Kataoka K, Kuwahara T, Nakayama H, Misawa N, Ohnishi Y. Effects of β-glucuronidase-deficient and lycopeneproducing Escherichia coli stains on formation of azoxymethane-Induced aberrant crypt foci in the rat colon. Biochem. Bioph. Res. Co. 262: 322–327 (1999)

    Article  CAS  Google Scholar 

  7. Narisawa T, Fukaura Y, Hasebe M, Ito M, Aizawa R, Murakoshi M, Uemura S, Khachik F, Nishino H. Inhibitory effects of natural carotenoids, α-crotene, β-carotene, lycopene, and lutein, on colonic aberrant crypt foci formation in rats. Cancer Lett. 107: 137–142 (1996)

    Article  CAS  Google Scholar 

  8. Stahl W, von Laar J, Martin HD, Emmerich T, Sies H. Stimulation of gap juntional communication: Comparison of acyclo-retinoic acid and lycopene. Arch. Biochem. Biophys. 373: 271–274 (2000)

    Article  CAS  Google Scholar 

  9. Amir H, Karas M, Giat J, Danilenko M, Levy R, Yermiahu T, Levy J, Sharoni Y. Lycopene and 1,25-dihydroxyvitamin D-3 cooperate in the inhibition of cell cycle progression and induction of differentiation in HL-60 leukemic cells. Nutr. Cancer Int. J. 33: 105–112 (1999)

    Article  CAS  Google Scholar 

  10. Pastori M, Pfander H, Boscoboinik D, Azzi A. Lycopene in association with α-tocopherol inhibits physiological concentrations proliferation of prostate carcinoma cells. Biochem. Bioph. Res. Co. 250: 582–585 (1998)

    Article  CAS  Google Scholar 

  11. Levy J, Bosin E, Feldman B, Giat Y, Miinster A, Danilenko M, Sharoni Y. Lycopene is a more potent inhibitor of human cancer cell proliferation than either α-carotene or β-carotene. Nutr. Cancer 24: 257–266 (1995)

    Article  CAS  Google Scholar 

  12. Zhang LX, Cooney RV, Bertram JS. Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in C3H/10T1/2 cells: Relationship to their cancer chemopreventive action. Carcinogenesis 12: 2109–2114 (1991)

    Article  CAS  Google Scholar 

  13. Rao AV, Agarwal S. Role of lycopene as antioxidant carotenoid in the prevention of chronic disease: A review. Nutr. Res. 19: 305–323 (1999)

    Article  CAS  Google Scholar 

  14. Mascio PD, Kaiser S, Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 274: 532–538 (1989)

    Article  Google Scholar 

  15. Ojima F, Sakamoto H, Ishiguro Y, Terao J. Consumption of carotenoids in photosensitized oxidation of human plasma and plasma low-density lipoprotein. Free Radical Bio. Med. 15: 377–384 (1993)

    Article  CAS  Google Scholar 

  16. Kim SJ, Nara E, Kobayashi H, Terao J, Nagao A. Formation of cleavage products by autoxidation of lycopene. Lipids 36: 191–199 (2001)

    Article  CAS  Google Scholar 

  17. Kim SJ. Cleavage products formed through autoxidation of ζ- carotene in liposomal suspension. Food Sci. Biotechnol. 13: 202–207 (2004)

    CAS  Google Scholar 

  18. Kim SJ, Kim HL, Jang HG. Oxidative cleavage products derived from phytofluene by pig liver homogenate. Food Sci. Biotechnol. 14: 424–427 (2005)

    CAS  Google Scholar 

  19. Mordi RC, Walton JC, Burton GW, Hughes L, Ingold KU, Lindsay DA, Moffatt DJ. Oxidative degradation of β-carotene and β-apo-8′-carotenal. Tetrahedron 49: 911–928 (1993)

    Article  CAS  Google Scholar 

  20. McClure TD, Liebler DC. A rapid method for profiling the products of antioxidant reactions by negative ion chemical ionization mass spectrometry. Chem. Res. Toxicol. 8: 128–135 (1995)

    Article  CAS  Google Scholar 

  21. Stratton SP, Schaefer WH, Liebler DC. Isolation and identification of singlet oxygen oxidation products of β-carotene. Chem. Res. Toxicol. 6: 542–547 (1993)

    Article  CAS  Google Scholar 

  22. Ukai N, Lu Y, Etoh H, Tagi A, Ina K, Oshima S, Ojima F, Sakamoto H, Ishiguro Y. Photosensitized oxygenation of lycopene. Biosci. Biotech. Bioch. 58: 1718–1719 (1994)

    Article  CAS  Google Scholar 

  23. Lu Y, Etoh H, Watanabe N, Ina K, Ukai N, Oshima S, Ojima F, Sakamoto H, Ishiguro Y. New carotenoid, hydrogen peroxide oxidation products from lycopene. Biosci. Biotech. Bioch. 59: 2153–2155 (1995)

    Article  CAS  Google Scholar 

  24. Ben-Aziz A, Britton G, Goodwin TW. Carotene epoxides of Lycopersicon escculentum. Phytochemistry 12: 2759–2764 (1973)

    Article  CAS  Google Scholar 

  25. Khachik R, Beecher GR, Smith JC Jr. Lutein, lycopene, and their oxidative metabolites in chemoprevention of cancer. J. Cell. Biochem. 22: 236–246 (1995)

    Article  CAS  Google Scholar 

  26. Nara EK, Kim SJ, Kobori M, Miyashita K, Nagao A. Acycloretinoic acid induces apoptosis in human prostate. Anticancer Res. 22: 689–696 (2002)

    Google Scholar 

  27. Kelly WK, Osman I, Reuter VE, Curley T, Heston WDW, Nanus DM, Scher HI. The development of biologic end points in patients treated with differentiation agents: An experience of retinoids in prostate cancer. Clin. Cancer Res. 6: 838–846 (2000)

    CAS  Google Scholar 

  28. McCormick DL, Rao KVN, Steele XE, Lubet RA, Kelloff GJ, Bosland MC. Chemoprevention of rat prostate carcinogenesis by 9-cis-retinoic acid. Cancer 59: 521–524 (1999)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seon-Jae Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SJ., Hwang, JH. & Han, KH. Formation of central cleavage products from lycopene analogues under liposomal suspension. Food Sci Biotechnol 20, 855–859 (2011). https://doi.org/10.1007/s10068-011-0120-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0120-8

Keywords

Navigation