Skip to main content
Log in

A laser flash photolysis study of the free radical chemistry of lipoic acid and dihydrolipoic acid

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The free radical chemistry of lipoic acid (LA) and dihydrolipoic acid (DHLA) intersect at the point where DHLA loses hydrogen to a good hydrogen abstracting radical, while LA reacts with strongly reducing ketyl radicals capable of donating a hydrogen atom. While aliphatic thiyl radicals have an absorbance at ~ 330 nm, the resulting radical, formally also a thiyl radical has distinct spectroscopic properties with a maximum at 385 nm, suggesting that the two sulphur centres interact strongly with each other as part of the chromophore. The reactions that form these radicals were studied by laser flash photolysis that revealed DHLA as an excellent hydrogen donor, while LA is an excellent hydrogen acceptor. The results support earlier evidence that the real antioxidant is DHLA, while LA is not; yet, the reported facile interconversion of the two molecules suggests that LA may be a better supplement, given its shelf stability, compared with a far more difficult-to-handle DHLA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Scheme 4
Scheme 5
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Çakatay, U. (2006). Pro-oxidant actions of α-lipoic acid and dihydrolipoic acid. Medical Hypotheses, 66, 110–117.

    Article  PubMed  Google Scholar 

  2. Lechner, S., Steimbach, R. R., Wang, L., Deline, M. L., Chang, Y.-C., Fromme, T., Klingenspor, M., Matthias, P., Miller, A. K., Médard, G., & Kuster, B. (2023). Chemoproteomic target deconvolution reveals Histone Deacetylases as targets of (R)-lipoic acid. Nature Communications, 14, 3548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Salehi, B., Berkay Yılmaz, Y., Antika, G., Boyunegmez Tumer, T., Fawzi Mahomoodally, M., Lobine, D., Akram, M., Riaz, M., Capanoglu, E., Sharopov, F., Martins, N., Cho, W. C., & Sharifi-Rad, J. (2019). Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules, 9, 356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kurutas, E. B. (2015). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutrition Journal, 15, 71–22.

    Article  Google Scholar 

  5. Petersen Shay, K., Moreau, R. F., Smith, E. J., & Hagen, T. M. (2008). Is α-lipoic acid a scavenger of reactive oxygen species in vivo? Evidence for its initiation of stress signaling pathways that promote endogenous antioxidant capacity. IUBMB Life, 60, 362–367.

    Article  PubMed  Google Scholar 

  6. Haj-Yehia, A. I., Assaf, P., Nassar, T., & Katzhendler, J. (2000). Determination of lipoic acid and dihydrolipoic acid in human plasma and urine by high-performance liquid chromatography with fluorimetric detection. Journal of Chromatography A, 870, 381–388.

    Article  CAS  PubMed  Google Scholar 

  7. Packer, L., Witt, E. H., & Tritschler, H. J. (1995). Alpha-lipoic acid as a biological antioxidant. Free Radical Biology and Medicine, 19, 227–250.

    Article  CAS  PubMed  Google Scholar 

  8. Kagan, V. E., Shvedova, A., Serbinova, E., Khan, S., Swanson, C., Powell, R., & Packer, L. (1992). Dihydrolipoic acid—a universal antioxidant both in the membrane and in the aqueous phase: Reduction of peroxyl, ascorbyl and chromanoxyl radicals. Biochemical Pharmacology, 44, 1637–1649.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao, F., & Liu, Z. Q. (2011). Comparison of antioxidant effectiveness of lipoic acid and dihydrolipoic acid. Journal of Biochemical and Molecular Toxicology, 25, 216–223.

    Article  CAS  PubMed  Google Scholar 

  10. Castañeda-Arriaga, R., & Alvarez-Idaboy, J. R. (2014). Lipoic acid and dihydrolipoic acid. A comprehensive theoretical study of their antioxidant activity supported by available experimental kinetic data. Journal of Chemical Information and Modeling, 54, 1642–1652.

    Article  PubMed  Google Scholar 

  11. Schmidt, U., & Müller, A. (1964). Über organische schwefelradikale. IV. Öffnung der disulfidbrücke durch cyanisopropyl-radikale. Justus Liebigs Annalen der Chemie, 672, 90–96.

    Article  CAS  Google Scholar 

  12. Pryor, W. A., & Smith, K. (1970). Reactions of radicals. 24. Mechanism of the substitution reaction on sulfur atoms by radicals or nucleophiles. Journal of the American Chemical Society, 92, 2731–2738.

    Article  CAS  Google Scholar 

  13. Ingold, K. U., & Roberts, B. P. (1971). Free-radical substitution reactions. Wiley-Interscience.

    Google Scholar 

  14. Beckwith, A. L. J., & Duggan, S. A. M. (1994). Kinetics of intramolecular alkyl radical attack on sulfur in disulfides and thioesters. Journal of the Chemical Society Perkin Transactions 2. https://doi.org/10.1039/P29940001509

    Article  Google Scholar 

  15. Krenske, E. H., Pryor, W. A., & Houk, K. N. (2009). Mechanism of SH2 reactions of disulfides: Frontside vs backside, stepwise vs concerted. Journal of Organic Chemistry, 74, 5356–5360.

    Article  CAS  PubMed  Google Scholar 

  16. Avila, D. V., Lusztyk, J., & Ingold, K. U. (1992). Color benzyloxyl, cumyloxyl orange, and 4-methoxycumyloxyl blue. Unexpected discovery that arylcarbinyloxyl radicals have strong absorptions in the visible. Journal of the American Chemical Society, 114, 6576–6577.

    Article  CAS  Google Scholar 

  17. Avila, D. V., Brown, C. E., Ingold, K. U., & Lusztyk, J. (1993). Solvent effects on the competitive b-scission and hydrogen atom abstraction reactions of the cumyloxyl radical. Resolution of a long-standing problem. Journal of the American Chemical Society, 115, 466–470.

    Article  CAS  Google Scholar 

  18. Baignée, A., Howard, J. A., Scaiano, J. C., & Stewart, L. C. (1983). Absolute rate constants for reactions of cumyloxy in solution. Journal of the American Chemical Society, 105, 6120–6123.

    Article  Google Scholar 

  19. Fasciani, C., Bueno Alejo, C. J., Grenier, M., Netto-Ferreira, J. C., & Scaiano, J. C. (2011). High-temperature organic reactions at room temperature using plasmon excitation: Decomposition of dicumyl peroxide. Organic Letters, 13, 204–207.

    Article  CAS  PubMed  Google Scholar 

  20. Paul, H., Small, R. D., Jr., & Scaiano, J. C. (1978). Hydrogen abstraction by tert-butoxy radicals. A laser photolysis and electron spin resonance study. Journal of the American Chemical Society, 100, 4520–4527.

    Article  CAS  Google Scholar 

  21. Small, R. D., Scaiano, J. C., & Patterson, L. K. (1978). Radical processes in lipids. A laser photolysis study of tert-butoxy radical reactivity toward fatty acids. Photochemistry and Photobiology, 29, 49.

    Article  Google Scholar 

  22. Hoffman, M. Z., & Hayon, E. (1972). One-electron reduction of the disulfide linkage in aqueous solution. Formation, protonation, and decay kinetics of the RSSR-radical. Journal of the American Chemical Society, 94, 7950–7957.

    Article  CAS  Google Scholar 

  23. Hofstetter, D., Nauser, T., & Koppenol, W. H. (2007). The glutathione thiyl radical does not react with nitrogen monoxide. Biochemical and Biophysical Research Communications, 360, 146–148.

    Article  CAS  PubMed  Google Scholar 

  24. Nauser, T., Casi, G., Koppenol, W. H., & Schöneich, C. (2008). Reversible intramolecular hydrogen transfer between cysteine thiyl radicals and glycine and alanine in model peptides: Absolute rate constants derived from pulse radiolysis and laser flash photolysis. The Journal of Physical Chemistry B, 112, 15034–15044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schöneich, C. (2022). Redox chemistry and biology of thiols (pp. 115–132). Elsevier.

    Book  Google Scholar 

  26. Dénès, F., Pichowicz, M., Povie, G., & Renaud, P. (2014). Thiyl radicals in organic synthesis. Chemical Reviews, 114, 2587–2693.

    Article  PubMed  Google Scholar 

  27. Mottley, C., & Mason, R. P. (2001). Sulfur-centered radical formation from the antioxidant dihydrolipoic acid*. Journal of Biological Chemistry, 276, 42677–42683.

    Article  CAS  PubMed  Google Scholar 

  28. Cely-Pinto, M., Wang, B., & Scaiano, J. C. (2023). Understanding α-lipoic acid photochemistry helps to control the synthesis of plasmonic gold nanostructures. Photochemical & Photobiological Sciences, 22, 1299–1307.

    Article  CAS  Google Scholar 

  29. Yaghmaei, M., & Scaiano, J. C. (2023). A simple Norrish type II actinometer for flow photoreactions. Photochemical & Photobiological Sciences, 22, 1865–1874.

    Article  CAS  Google Scholar 

  30. Jockusch, S., Landis, M. S., Freiermuth, B., & Turro, N. J. (2001). Photochemistry and photophysics of a-hydroxy ketones. Macromolecules, 34, 1619–1626.

    Article  CAS  Google Scholar 

  31. McGilvray, K. L., Decan, M. R., Wang, D., & Scaiano, J. C. (2006). Facile photochemical synthesis of unprotected aqueous gold nanoparticles. Journal of the American Chemical Society, 128, 15980–15981.

    Article  CAS  PubMed  Google Scholar 

  32. Yaghmaei, M., Bourgonje, C. R., & Scaiano, J. C. (2023). Facile scale-up of the flow synthesis of silver nanostructures based on Norrish type I photoinitiators. Molecules, 28, 4445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Curran, D. P., Martin-Esker, A. A., Ko, S. B., & Newcomb, M. (1993). Rate constants for chalcogen group transfers in bimolecular substitution reactions with primary alkyl radicals. Journal of Organic Chemistry, 58, 4691–4695.

    Article  CAS  Google Scholar 

  34. Cohen, S. G., Orman, S., & Laufer, D. (1962). Mercaptans and disulfides as inhibitors of non-chain radiation induced Reactions. Journal of the American Chemical Society, 84, 1061–1062.

    Article  CAS  Google Scholar 

  35. Cohen, S. G., & Aktipis, S. (1966). Photoreduction of benzophenone in methyl 2-octyl ether effects of mercaptan disulfide and oxygen 1. Journal of the American Chemical Society, 88, 3587–3594.

    Article  CAS  Google Scholar 

  36. Folkes, L. K., Bartesaghi, S., Trujillo, M., Wardman, P., & Radi, R. (2022). Radiolysis studies of oxidation and nitration of tyrosine and some other biological targets by peroxynitrite-derived radicals. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms23031797

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fogacci, F., Rizzo, M., Krogager, C., Kennedy, C., Georges, C. M. G., Knežević, T., Liberopoulos, E., Vallée, A., Pérez-Martínez, P., Wenstedt, E. F. E., Šatrauskienė, A., Vrablík, M., & Cicero, A. F. G. (2020). Safety evaluation of α-lipoic acid supplementation: A systematic review and meta-analysis of randomized placebo-controlled clinical studies. Antioxidants, 9, 1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. https://www.mountsinai.org/health-library/supplement/alpha-lipoic-acid. Accessed 16 Jun 2023

Download references

Acknowledgements

Thanks are due to the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, the Canada Research Chairs Program for funding this research.

Funding

Natural Sciences and Engineering Research Council of Canada, Grand number: Discovery, Canada Research Chairs, Grand number: CRC1, Canada Foundation for Innovation, Grand number: EF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Scaiano.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3401 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didarataee, S., Joshi, N. & Scaiano, J.C. A laser flash photolysis study of the free radical chemistry of lipoic acid and dihydrolipoic acid. Photochem Photobiol Sci 22, 2579–2585 (2023). https://doi.org/10.1007/s43630-023-00473-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00473-7

Navigation