Skip to main content
Log in

Formation of cleavage products by autoxidation of lycopene

  • Published:
Lipids

Abstract

The cleavage products formed by autoxidation of lycopene were evaluated in order to elucidate possible oxidation products of lycopene in biological tissues. Lycopene solubilized at 50 μM in toluene, aqueous Tween 40, or liposomal suspension was oxidized by incubating at 37°C for 72 h. Among a number of oxidation products formed, eight products in the carbonyl compound fraction were identified as 3,7,11-trimethyl-2,4,6,10-dodecatetraen-1-al, 6,10,14-trimethyl-3,5,7,9,13-pentadecapentaen-2-one, acycloretinal, apo-14′-lycopenal, apo-12′-lycopenal, apo-10′-lycopenal, apo-8′-lycopenal, and apo-6′-lycopenal. These correspond to a series of products formed by cleavage in the respective 11 conjugated double bonds of lycopene. The maximal formation of acycloretinal was 135 nM in toluene, 49 nM in aqueous Tween 40, and 64 nM in liposomal suspension. Acycloretinoic acid was also formed by autoxidation of lycopene, although its formation was lower in the aqueous media than in toluene. The pig liver homogenate had the ability to convert acycloretinal to acycloretinoic acid, comparable to the conversion of all-trans-retinal to all-trans-retinoic acid. These results suggest that lycopene might be cleaved to a series of apolycopenals and short-chain carbonyl compounds under the oxidative conditions in biological tissues and that acycloretinal is further enzymatically converted to acycloretinoic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GC-MS:

gas chromatography-mass spectrometry

HPLC:

high-performance liquid chromatography

NMR:

nuclear magnetic resonance

RAR:

retinoic acid receptor

RXR:

retinoid X response

UV-VIS:

ultraviolet-visible

References

  1. Goodman, D.S., and Olson, J.A. (1969) The Conversion of All-trans-β-carotene into Retinal, Methods Enzymol. 15, 462–475.

    Article  CAS  Google Scholar 

  2. Nagao, A., During, A., Hoshino, C., Terao, J., and Olson, J.A. (1996) Stoichiometric Conversion of All trans-β-Carotene to Retinal by Pig Intestinal Extract, Arch. Biochem. Biophys. 328, 57–63.

    Article  PubMed  CAS  Google Scholar 

  3. Wang, X.-D., Tang, G.-W., Fox, J.G., Krinsky, N.I., and Russell, R.M. (1991) Enzymatic Conversion of β-Carotene into β-Apo-carotenals and Retinoids by Human, Monkey, Ferret, and Rat Tissues, Arch. Biochem. Biophys. 285, 8–16.

    Article  PubMed  CAS  Google Scholar 

  4. Handelman, G.J., Van Kujik, F.J.G.M., Chatterjee, A., and Krinsky, N.I. (1991) Characterization of Products Formed During the Autoxidation of β-Carotene, Free Radical Biol. Med. 10, 427–437.

    Article  CAS  Google Scholar 

  5. Mordi, R.C., Walton, J.C., Burton, G.W., Hughes, L., Ingold, K.U., Lindsay, D.A., and Moffatt, D.J. (1993) Oxidative Degradation of β-Carotene and β-Apo-8′-carotenal, Tetrahedron 49, 911–928.

    Article  CAS  Google Scholar 

  6. McClure, T.D., and Liebler, D.C. (1995) A Rapid Method for Profiling the Products of Antioxidant Reactions by Negative Ion Chemical Ionization Mass Spectrometry, Chem. Res. Toxicol. 8, 128–135.

    Article  PubMed  CAS  Google Scholar 

  7. Stratton, S.P., Schaefer, W.H., and Liebler, D.C. (1993) Isolation and Identification of Singlet Oxygen Oxidation Products of β-Carotene, Chem. Res. Toxicol. 6, 542–547.

    Article  PubMed  CAS  Google Scholar 

  8. Baker, D.L., Krol, E.S., Jacobsen, N., and Liebler, D.C. (1999) Reactions of β-Carotene with Cigarette Smoke Oxidants. Identification of Carotenoid Oxidation Products and Evaluation of the Prooxidant/Antioxidant Effect, Chem. Res. Toxicol. 12, 535–543.

    Article  PubMed  CAS  Google Scholar 

  9. Yeum, K.J., Lee-Kim, Y.C., Yoon, S., Lee, K.Y., Park, I.S., Lee, K.S., Kim, B.S., Tang, G., Russell, R.M., and Krinsky, N.I. (1995) Similar Metabolites Formed from β-Carotene by Human Gastric Mucosal Homogenates, Lipoxygenase, or Linoleic Acid Hydroperoxide, Arch. Biochem. Biophys. 321, 167–174.

    Article  PubMed  CAS  Google Scholar 

  10. Wu, Z., Robinson, D.S., Hughes, R.K., Casey, R., Hardy, D., and West, S.I. (1999) Co-oxidation of β-Carotene Catalyzed by Soybean and Recombinant Pea Lipoxygenases, J. Agric. Food Chem. 47, 4899–4906.

    Article  PubMed  CAS  Google Scholar 

  11. Lutz-Roder, A., Jezussek, M., and Winterhalter, P. (1999) Nickel Peroxide-Induced Oxidation of Canthaxanthin, J. Agric. Food Chem. 47, 1887–1891.

    Article  PubMed  CAS  Google Scholar 

  12. Nikawa, T., Schulz, W.A., van den Brink, C.E., Hanusch, M., van der Saag, P., Stahl, W., and Sies, H. (1995) Efficacy of All-trans-β-carotene, Canthaxanthin, and All-trans-, 9-cis, and 4-Oxoretinoic Acids in Including Differentiation of an F9 Embryonal Carcinoma RARβ-lacZ Receptor Cell Line, Arch. Biochem. Biophys. 316, 665–672.

    Article  PubMed  CAS  Google Scholar 

  13. Hanusch, M., Stahl, W., Schulz, W.A., and Sies, H. (1995) Induction of Gap Junctional Communication by 4-Oxoretinoic Acid Generated from Its Precursor Canthaxanthin, Arch. Biochem. Biophys. 317, 423–428.

    Article  PubMed  CAS  Google Scholar 

  14. Hu, X., White, K.M., Jacobsen, N.E., Mangelsdorf, D.J., and Canfield, L.M. (1998) Inhibition of Growth and Cholesterol Synthesis in Breast Cancer Cells by Oxidation Products of β-Carotene, J. Nutr. Biochem. 9, 567–574.

    Article  CAS  Google Scholar 

  15. Bausch, J., Liechti, H., Oesterhelt, G., and Kistler, A. (1999) Isolation and Identification of a Major Urinary Canthaxanthin Metabolite in Rats, Int. Vitam. Nutr. Res. 69, 268–272.

    Article  CAS  Google Scholar 

  16. Wolz, E., Liechti, H., Notter, B., Oesterhelt, G., and Kistler, A. (1999) Characterization of Metabolites of Astaxanthin in Primary Cultures of Rat Hepatocytes, Drug Metab. Dispos. 27, 456–462.

    PubMed  CAS  Google Scholar 

  17. Giovannucci, E., Ascherio, A., Rimn, E.B., Stampfer, M.J., Colditz, G.A., and Willett, W.C. (1995) Intake of Carotenoids and Retinol in Relation to Risk of Prostate Cancer, J. Natl. Cancer Inst. 87, 1767–1776.

    PubMed  CAS  Google Scholar 

  18. Gann, P.H., Ma, J., Giovannucci, E., Willett, W., Sacks, F.M., Hennekens, C.H., and Stampfer, M.J. (1999) Lower Prostate Cancer Risk in Men with Elevated Plasma Lycopene Levels: Results of a Prospective Analysis, Cancer Res. 59, 1225–1230.

    PubMed  CAS  Google Scholar 

  19. Klipstein-Grobusch, K., Launer, L.J., Geleijnse, J.M., Boeing, H., Hofman, A., and Witteman, C.M. (2000) Serum Carotenoids and Atherosclerosis—The Rotterdam Study, Arteriosclerosis 148, 49–56.

    Article  CAS  Google Scholar 

  20. Suganuma, H., and Inakuma, T. (1999) Protective Effect of Dietary Tomato Against Endothelial Dysfunction in Hypercholesterolemic Mice, Biosci. Biotech. Biochem. 63, 78–82.

    Article  CAS  Google Scholar 

  21. Jain, C.K., Agarwal, S., and Rao, A.V. (1999) The Effect of Dietary Lycopene on Bioavailability, Tissue Distribution, in vivo Antioxidant Properties and Colonic Preneoplasia in Rats, Nutr. Res. 19, 1383–1391.

    Article  CAS  Google Scholar 

  22. Arimochi, H., Kataoka, K., Kuwahara, T., Nakayama, H., Misawa, N., and Ohnishi, Y. (1999) Effects of Beta-glucuronidase-Deficient and Lycopene-Producing Escherichia coli Strains on Formation of Azoxymethane-Induced Aberrant Crypt Foci in the Rat Colon, Biochem. Biophys. Res. Commun. 262, 322–327.

    Article  PubMed  CAS  Google Scholar 

  23. Narisawa, T., Fukaura, Y., Hasebe, M., Ito, M., Aizawa, R., Murakoshi, M., Uemura, S., Khachik, F., and Nishino, H. (1996) Inhibitory Effects of Natural Carotenoids, α-Carotene, β-Carotene, Lycopene and Lutein, on Colonic Aberrant Crypt Foci Formation in Rats, Cancer Lett. 107, 137–142.

    Article  PubMed  CAS  Google Scholar 

  24. Stahl, W., von Laar, J., Martin, H.D., Emmerich, T., and Sies, H. (2000) Stimulation of Gap Junctional Communication: Comparison of Acyclo-Retinoic Acid and Lycopene, Arch. Biochem. Biophys. 373, 271–274.

    Article  PubMed  CAS  Google Scholar 

  25. Amir, H., Karas, M., Giat, J., Danilenko, M., Levy, R., Yermiahu, T., Levy, J., and Sharoni, Y. (1999) Lycopene and 1,25-Dihydroxyvitamin D−3 Cooperate in the Inhibition of Cell Cycle Progression and Induction of Differentiation in HL-60 Leukemic Cells, Nutr. Cancer Internat. J. 33, 105–112.

    CAS  Google Scholar 

  26. Pastori, M., Pfander, H., Boscoboinik, D., and Azzi, A. (1998) Lycopene in Association with Alpha-Tocopherol Inhibits Physiological Concentrations Proliferation of Prostate Carcinoma Cells, Biochem. Biophys. Res. Commun. 250, 582–585.

    Article  PubMed  CAS  Google Scholar 

  27. Levy, J., Bosin, E., Feldman, B., Giat, Y., Miinster, A., Danilenko, M., and Sharoni, Y. (1995) Lycopene Is a More Potent Inhibitor of Human Cancer Cell Proliferation Than Either Alpha-Carotene or Beta-Carotene, Nutr. Cancer 24, 257–266.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang, L.X., Cooney, R.V., and Bertram, J.S. (1991) Carotenoids Enhance Gap Junctional Communication and Inhibit Lipid Peroxidation in C3H/10T1/2 Cells: Relationship to Their Cancer Chemopreventive Action, Carcinogenesis 12, 2109–2114.

    PubMed  CAS  Google Scholar 

  29. Rao, A.V., and Agarwal, S. (1999) Role of Lycopene as Antioxidant Carotenoid in the Prevention of Chronic Disease: A Review, Nutr. Res. 19, 305–323.

    Article  CAS  Google Scholar 

  30. Mascio, P.D., Kaiser, S., and Sies, H. (1989) Lycopene as the Most Efficient Biological Carotenoid Singlet Oxygen Quencher, Arch. Biochem. Biophys. 274, 532–538.

    Article  PubMed  Google Scholar 

  31. Ojima, F., Sakamoto, H., Ishiguro, Y., and Terao, J. (1993) Consumption of Carotenoids in Photosensitized Oxidation of Human Plasma and Plasma Low-Density Lipoprotein, Free Radical Biol. Med. 15, 377–384.

    Article  CAS  Google Scholar 

  32. Ukai, N., Lu, Y., Etoh, H., Tagi, A., Ina, K., Oshima, S., Ojima, F., Sakamoto, H., and Ishiguro, Y. (1994) Photosensitized Oxygenation of Lycopene, Biosci. Biotech. Biochem. 58, 1718–1719.

    Article  CAS  Google Scholar 

  33. Lu, Y., Etoh, H., Watanabe, N., Ina, K., Ukai, N., Oshima, S., Ojima, F., Sakamoto, H., and Ishiguro, Y. (1995) New Carotenoid, Hydrogen Peroxide Oxidation Products from Lycopene, Biosci. Biotech. Biochem. 59, 2153–2155.

    CAS  Google Scholar 

  34. Ben-Aziz, A., Britton, G., and Goodwin, T.W. (1973) Carotene Epoxides of Lycopersicon escculentum, Phytochemistry 12, 2759–2764.

    Article  CAS  Google Scholar 

  35. Khachik, F., Beecher, G.R., and Smith, J.C., Jr. (1995) Lutein, Lycopene, and Their Oxidative Metabolites in Chemoprevention of Cancer, J. Cell. Biochem. 22, 236–246.

    Article  CAS  Google Scholar 

  36. Zumbrunn, A., Uebelhart, P., and Eugster, C.H. (1985) Synthesis of Carotenes with ψ-End Groups and (Z)-Configuration at Terminal Conjugated Double Bonds, Helv. Chim. Acta 68, 1519–1539.

    Article  CAS  Google Scholar 

  37. Tsujimoto, K., Aoki, M., and Ohashi, M. (1992) Stereoselective Photoisomerization of φ-Retinal, J. Photochem. Photobiol. A: Chem. 65, 73–78.

    Article  CAS  Google Scholar 

  38. Barua, R.K., and Barua, A.B. (1964) Vitamin A Acid from Retinene, Biochem. J. 92, 21c-22c.

    PubMed  CAS  Google Scholar 

  39. Davis, J.B., Jackman, L.M., Siddons, P.T., and Weedon, B.C.L. (1966) Carotenoids and Related Compounds. Part XV. The Structure and Synthesis of Phytoene, Phytofluene, ξ-Carotene, and Neurosporene, J. Chem. Soc. C, 23, 2154–2165.

    Article  Google Scholar 

  40. Märki-Fischer, E., Uebelhart, P., and Eugster, C.H. (1987) 10′-Apolycopen-10′-ol and 10−Apolycopene-10′-oic acid from the Petals of the Rose Hybrid ‘Maréchal niel’, Helv. Chim. Acta 70, 1994–2002.

    Article  Google Scholar 

  41. Barua, A.B., and Goswami, B.C. (1979) Carotenoids of Cephalandra indica (Coccinia indica), Current Sci., 48, 630–632.

    CAS  Google Scholar 

  42. Napoli, J.L., and Race, K.R. (1987) The Biosynthesis of Retinoic Acid from Retinol by Rat Tissues in vitro, Arch. Biochem. Biophys. 255, 95–101.

    Article  PubMed  CAS  Google Scholar 

  43. Bradford, M.M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  44. Napoli, J.N. (1993) Biosynthesis and Metabolism of Retinoic Acid: Roles of CRBP and CRABP in Retinoic Acid: Roles of CRBP and CRABP in Retinoic Acid Homeostasis, J. Nutr. 123, 362–366.

    PubMed  CAS  Google Scholar 

  45. Araki, H., Shidoji, Y., Yamada, Y., Moriwaki, H., and Muto, Y. (1995) Retinoid Agonist Activities of Synthetic Geranyl Geranoic Acid Derivatives, Biochem. Biophys. Res. Commun. 209, 66–72.

    Article  PubMed  CAS  Google Scholar 

  46. Duitsman, P.K., Barua, A.B., Becker, B., and Olson, J.A. (1999) Effects of Epoxycarotenoids, β-Carotene, and Retinoic Acid on the Differentiation and Viability of the Leukemia Cell Line NB4 in vitro, Int. J. Vitam. Nutr. Res. 69, 303–308.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Nagao.

About this article

Cite this article

Kim, SJ., Nara, E., Kobayashi, H. et al. Formation of cleavage products by autoxidation of lycopene. Lipids 36, 191–200 (2001). https://doi.org/10.1007/s11745-001-0706-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0706-8

Keywords

Navigation