Skip to main content
Log in

Fermentation kinetics of production of ubiquinone-10 by Paracoccus dinitrificans NRRL B-3785: Effect of type and concentration of carbon and nitrogen sources

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Ubiquinone-10 (CoQ10), a vitamin-like lipophilic component of the membrane-bound electron transport system, has a wide range of therapeutic, neutraceutical, and cosmeceutical applications. The objective of this study was to optimize nutritional requirements for production of CoQ10 by Paracoccus dinitrificans NRRL B-3785 fermentation. Effect of type and concentration of carbon and nitrogen source on fermentation kinetic parameters were analyzed using logistic and Luedeking-Piret equations. In submerged batch fermentation, yield of CoQ10 was 12.22 mg/L when 40 g/L glycerol was used and specific growth rate (0.056/h) as well as growth associated constant (α=0.680 mg/g) were higher as compared to other concentrations. Ammonium nitrate and proteose peptone at 5 (α=0.677 mg/g; β= 0.0072 mg/g·h) and 20 g/L (α=0.806 mg/g; β=0.0074 mg/g·h), respectively, were optimal for CoQ10 production. CoQ10 formation observed to be both growth and nongrowth associated. In optimized medium CoQ10 formation increased considerably from 1.91 to 14.12 mg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lenaz G, Fato R, Formiggini G, Genova ML. The role of coenzyme Q in mitochondrial electron transport. Mitochondrion 7(suppl. 1): S8–S33 (2007)

    Article  CAS  Google Scholar 

  2. Klingen AR, Palsdottir H, Hunte C, Ullmann GM. Redox-linked protonation state changes in cytochrome bc1 identified by Poisson-Boltzmann electrostatics calculations. Biochim. Biophys. Acta 1767: 204–221 (2007)

    Article  CAS  Google Scholar 

  3. Mitchell P. The vital protonmotive role of coenzyme Q. Vol. 6, pp. 3–10. In: Biomedical and Clinical Aspects of Coenzyme Q. Folkers K, Littarru GP, Yamagami T (eds). Elsevier, Amsterdam, Netherlands (1991)

    Google Scholar 

  4. Sarter B. Coenzyme Q10 and cardiovascular disease: A review. J. Cardiovasc. Nurs. 16: 9–20 (2002)

    Google Scholar 

  5. Gaby AR. The role of coenzyme Q10 in clinical medicine: Part I. Altern. Med. Rev. 1: 11–17 (1996)

    Google Scholar 

  6. Sharma S, Kheradpezhou M, Shavali S, Refaey HE, Eken J, Hagen C, Ebadi M. Neuroprotective actions of coenzyme Q10 in Parkinson’s disease in Section IV-Quinones and age related diseases. Method. Enzymol. 382: 488–510 (2004)

    Article  CAS  Google Scholar 

  7. Beal MF. Coenzyme Q10 as a possible treatment for neurodegenerative diseases. Free Radical Res. 36: 455–460 (2002)

    Article  Google Scholar 

  8. Folkers K, Langsjoen P, Willis R, Richardson P, Xia LJ, Ye CQ, Tamagawa H. Lovastatin decreases coenzyme Q levels in humans. P. Natl. Acad. Sci. USA 87: 8931–8934 (1990)

    Article  CAS  Google Scholar 

  9. Geromel V, Darin N, Chretien D, Benit P, DeLonlay P, Rotig A, Munnich A, Rustin P. Coenzyme Q(10) and idebenone in the therapy of respiratory chain diseases: Rationale and comparative benefits. Mol. Genet. Metab. 77: 21–30 (2002)

    Article  CAS  Google Scholar 

  10. Lockwood K, Moesgaard S, Folkers K. Partial and complete regression of breast cancer in patients in relation to dosage of coenzyme Q10. Biochem. Bioph. Res. Co. 199: 1504–1508 (1994)

    Article  CAS  Google Scholar 

  11. Tarnopolsky MA, Beal MF. Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann. Neurol. 49: 561–574 (2001)

    Article  CAS  Google Scholar 

  12. Rona C, Vailati F, Berardesca E. The cosmetic treatment of wrinkles. J. Cosmet. Dermatol. 3: 26–34 (2004)

    Article  CAS  Google Scholar 

  13. Sakaki K, Watanabe M, Suda Y, Ishizuka A, Noparatnaraporn N. Applications of photosynthetic bacteria for medical field. J. Biosci. Bioeng. 100: 481–488 (2005)

    Article  Google Scholar 

  14. Negishi ES, Liou Y, Xu C, Huo A. A novel, highly selective, and general methodology for the synthesis of 1,5-diene-containing oligoisoprenoids of all possible geometrical combinations exemplified by an iterative and convergent synthesis of coenzyme Q10. Org. Lett. 4: 261–264 (2002)

    Article  CAS  Google Scholar 

  15. Lipshutz BH, Mollard P, Pfeiffer SS, Chrisman W. A short, highly efficient synthesis of coenzyme Q10. J. Am. Chem. Soc. 124: 14282–14283 (2002)

    Article  CAS  Google Scholar 

  16. Folkers KA, Woodruff HB. Fermentation production of coenzyme-Q10. US Patent 3,066,080 (1962)

  17. Yoshida H, Kotani Y, Ochiai K, Araki K. Production of CoQ10 using bacteria. J. Gen. Appl. Microbiol. 44: 19–26 (1998)

    Article  CAS  Google Scholar 

  18. Peter K, Zgor K, Vladimir D. Effect of oxygen on CoQ10 production by Paracoccus denitrificans. Biotechnol. Lett. 15: 1001–1002 (1993)

    Article  Google Scholar 

  19. Yen HW, Chiu CH. The influences of aerobic-dark and anaerobiclight cultivation on CoQ10 production by Rhodobacter sphaeroides in the submerged fermenter. Enzyme Microb. Tech. 41: 600–604 (2007)

    Article  CAS  Google Scholar 

  20. Park YC, Kim SJ, Choi JH, Lee WH, Park KM, Kawamukai M, Ryu YW, Seo JH. Batch and fed-batch production of coenzyme Q10 in recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Gluconobacter suboxydans. Appl. Microbiol. Biot. 67: 192–196 (2005)

    Article  CAS  Google Scholar 

  21. Bule MV, Singhal RS. Use of carrot juice and tomato juice as natural precursors for enhanced production of ubiquinone-10 by Pseudomonas diminuta NCIM 2865. Food Chem. 116: 302–305 (2009)

    Article  CAS  Google Scholar 

  22. Gu SB, Yao JM, Yuan QP, Xue PJ, Zheng ZM, Yu ZL. Kinetics of Agrobacterium tumefaciens ubiquinone-10 batch production. Process Biochem. 41: 1908–1912 (2006)

    Article  CAS  Google Scholar 

  23. Lee JK, Her G, Kim SY, Seo JH. Cloning and functional expression of the dps gene encoding decaprenyl diphosphate synthase from Agrobacterium tumefaciens. Biotechnol. Progr. 20: 51–56 (2004)

    Article  CAS  Google Scholar 

  24. Bok SH, Demain AL. An improved colorimetric assay for polyols. Anal. Biochem. 81: 21–27 (1977)

    Article  Google Scholar 

  25. Ashby RD, Solaiman DKY, Foglia TA. Bacterial poly(hydroxyalkanoate) polymer production from the biodiesel co-product stream. J. Polym. Environ. 12: 105–112 (2004)

    Article  CAS  Google Scholar 

  26. Meganathan R. Ubiquinone biosynthesis in microorganisms. FEMS Microbiol. Lett. 203: 131–139 (2001)

    Article  CAS  Google Scholar 

  27. Matsumura M, Kobayashi T, Aiba S. Anaerobic production of ubiquinone-10 by Paracoccus dinitrificans. Eur. J. Appl. Microbiol. 17: 85–89 (1983)

    Article  CAS  Google Scholar 

  28. Ashby RD, Solaiman DKY, Foglia TA. Synthesis of short-/mediumchain-length poly (hydroxyalkanoate) blends by mixed culture fermentation of glycerol. Biomacromolecules 6: 2106–2112 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh V. Bule.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bule, M.V., Singhal, R.S. Fermentation kinetics of production of ubiquinone-10 by Paracoccus dinitrificans NRRL B-3785: Effect of type and concentration of carbon and nitrogen sources. Food Sci Biotechnol 20, 607–613 (2011). https://doi.org/10.1007/s10068-011-0086-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0086-6

Keywords

Navigation