Skip to main content
Log in

Role of bone scan in the assessment of polymyositis/dermatomyositis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the significance of bone scan findings in Korean polymyositis/dermatomyositis (PM/DM) patients. The participants in this study were 26 PM/DM patients who fulfilled the proposed criteria for definite or probable PM/DM. All patients had been examined by bone scan. The results were analyzed visually and quantitatively using the uptake ratios. Correlations between the bone scan parameters of six proximal muscle groups (trapezius, deltoid, biceps, iliopsoas, quadriceps, and gluteus medius and maximus) and clinical parameters (laboratory values and manual muscle test) representing disease activities were assessed. Based on visual analyses of their bone scans, 10 of 14 (71.4 %) patients with active PM/DM had abnormal muscle uptake. Visual grading of the bone scans had a sensitivity and specificity of 74 and 90.9 %, respectively, for the assessment of muscle inflammation. Maximal proximal muscle uptake ratios, as determined on the bone scans, were significantly higher in patients with active PM/DM than in those with inactive disease (median 1.97 vs. 1.02, p = 0.046). Maximal proximal uptake ratios correlated significantly with creatine kinase (r = 0.394, p = 0.046), lactate dehydrogenase (LDH, r = 0.473, p = 0.015), aldolase (r = 0.428, p = 0.029), erythrocyte sedimentation rate (r = 0.412, p = 0.036), C-reactive protein (r = 0.454, p = 0.002), and manual muscle test results (r = −0.399, p = 0.044). Mean proximal muscle uptake ratios correlated significantly with LDH (r = 0.438, p = 0.025) and aldolase (r = 0.572, p = 0.002). Visually assessed proximal muscle uptake grades and maximal proximal muscle uptake ratios as determined by bone scan correlated significantly with the levels of known PM/DM disease activity markers. The findings of this study suggest that bone scan is a useful imaging technique for the evaluation of PM/DM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Carstens PO, Schmidt J (2014) Diagnosis, pathogenesis and treatment of myositis: recent advances. Clin Exp Immunol 175:349–358

    Article  PubMed Central  PubMed  Google Scholar 

  2. Nasr R, Reed AM, Peterson EJ (2012) Update: biomarkers for idiopathic inflammatory myopathies. Curr Opin Rheumatol 24:609–615

    CAS  PubMed  Google Scholar 

  3. Fraser DD, Frank JA, Dalakas M et al (1991) Magnetic resonance imaging in the idiopathic inflammatory myopathies. J Rheumatol 18:1693–1700

    CAS  PubMed  Google Scholar 

  4. Pitt AM, Fleckenstein JL, Greenlee RG Jr et al (1993) MRI-guided biopsy in inflammatory myopathy: initial results. Magn Reson Imaging 11:1093–1099

    Article  CAS  PubMed  Google Scholar 

  5. Tomasova Studynkova J, Charvat F, Jarosova K, Vencovsky J (2007) The role of MRI in the assessment of polymyositis and dermatomyositis. Rheumatology (Oxford) 46:1174–1179

    Article  CAS  Google Scholar 

  6. Tanaka S, Ikeda K, Uchiyama K et al (2013) [18F]FDG uptake in proximal muscles assessed by PET/CT reflects both global and local muscular inflammation and provides useful information in the management of patients with polymyositis/dermatomyositis. Rheumatology (Oxford) 52:1271–1278

    Article  CAS  Google Scholar 

  7. Owada T, Maezawa R, Kurasawa K et al (2012) Detection of inflammatory lesions by f-18 fluorodeoxyglucose positron emission tomography in patients with polymyositis and dermatomyositis. J Rheumatol 39:1659–1665

    Article  CAS  PubMed  Google Scholar 

  8. Pipitone N, Versari A, Zuccoli G et al (2012) 18F-Fluorodeoxyglucose positron emission tomography for the assessment of myositis: a case series. Clin Exp Rheumatol 30:570–573

    PubMed  Google Scholar 

  9. Lazarou IN, Guerne PA (2013) Classification, diagnosis, and management of idiopathic inflammatory myopathies. J Rheumatol 40:550–564

    Article  CAS  PubMed  Google Scholar 

  10. Brill DR (1981) Radionuclide imaging of nonneoplastic soft tissue disorders. Semin Nucl Med 11:277–288

    Article  CAS  PubMed  Google Scholar 

  11. Goldfarb CR, Ongseng F, Kuhn M, Metzger T (1988) Non-skeletal accumulation of bone seeking agents: pelvis. Semin Nucl Med 18:159–161

    Article  CAS  PubMed  Google Scholar 

  12. Brown M, Swift TR, Spies SM (1976) Radioisotope scanning in inflammatory muscle disease. Neurology 26:517–520

    Article  CAS  PubMed  Google Scholar 

  13. Scott JA, Palmer EL, Fischman AJ (1989) HIV-associated myositis detected by radionuclide bone scanning. J Nucl Med 30:556–558

    CAS  PubMed  Google Scholar 

  14. Spies SM, Swift TR, Brown M (1975) Increased 99mTc-polyphosphate muscle uptake in a patient with polymyositis: case report. J Nucl Med 16:1125–1127

    CAS  PubMed  Google Scholar 

  15. Wu Y, Seto H, Shimizu M et al (1996) Extensive soft-tissue involvement of dermatomyositis detected by whole-body scintigraphy with 99mTc-MDP and 201TL-chloride. Ann Nucl Med 10:127–130

    Article  CAS  PubMed  Google Scholar 

  16. Mitomo M, Miyazaki C, Mukai M et al (2005) Tc-99m MDP bone scintigraphy of myositis as a manifestation of chronic graft-versus-host disease after non-myeloablative peripheral stem cell transplantation. Ann Nucl Med 19:41–45

    Article  PubMed  Google Scholar 

  17. Otsuka N, Fukunaga M, Ono S et al (1988) Visualization of soft tissue by technetium-99m MDP in polymyositis. Case reports. Clin Nucl Med 13:291–293

    Article  CAS  PubMed  Google Scholar 

  18. Walker UA, Garve K, Brink I et al (2007) 99mTechnetium pyrophosphate scintigraphy in the detection of skeletal muscle disease. Clin Rheumatol 26:1119–1122

    Article  CAS  PubMed  Google Scholar 

  19. Bohan A, Peter JB (1975) Polymyositis and dermatomyositis (first of two parts). N Engl J Med 292:344–347

    Article  CAS  PubMed  Google Scholar 

  20. Bohan A, Peter JB (1975) Polymyositis and dermatomyositis (second of two parts). N Engl J Med 292:403–407

    Article  CAS  PubMed  Google Scholar 

  21. Harris-Love MO, Shrader JA, Koziol D et al (2009) Distribution and severity of weakness among patients with polymyositis, dermatomyositis and juvenile dermatomyositis. Rheumatology (Oxford) 48:134–139

    Article  CAS  Google Scholar 

  22. Rider LG, Koziol D, Giannini EH et al (2010) Validation of manual muscle testing and a subset of eight muscles for adult and juvenile idiopathic inflammatory myopathies. Arthritis Care Res 62:465–472

    Article  Google Scholar 

  23. Kendall FME, Provance P et al (2005) Muscles: testing and function, 5th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  24. Tzaribachev N, Well C, Schedel J, Horger M (2009) Whole-body MRI: a helpful diagnostic tool for juvenile dermatomyositis case report and review of the literature. Rheumatol Int 29:1511–1514

    Article  PubMed  Google Scholar 

  25. Weckbach S (2009) Whole-body MR imaging for patients with rheumatism. Eur J Radiol 70:431–441

    Article  PubMed  Google Scholar 

  26. Malattia C, Damasio MB, Madeo A et al. (2013) Whole-body MRI in the assessment of disease activity in juvenile dermatomyositis. Ann Rheum Dis

  27. Walker UA (2008) Imaging tools for the clinical assessment of idiopathic inflammatory myositis. Curr Opin Rheumatol 20:656–661

    Article  PubMed  Google Scholar 

  28. Weber MA, Krakowski-Roosen H, Delorme S et al (2006) Relationship of skeletal muscle perfusion measured by contrast-enhanced ultrasonography to histologic microvascular density. J Ultrasound Med 25:583–591

    PubMed  Google Scholar 

  29. Krix M, Weber MA, Krakowski-Roosen H et al (2005) Assessment of skeletal muscle perfusion using contrast-enhanced ultrasonography. J Ultrasound Med 24:431–441

    PubMed  Google Scholar 

  30. Weber MA, Jappe U, Essig M et al (2006) Contrast-enhanced ultrasound in dermatomyositis- and polymyositis. J Neurol 253:1625–1632

    Article  PubMed  Google Scholar 

  31. Abdullah ZS, Khan MU, Kodali SK, Javaid A (2010) Pyomyositis mimicking osteomyelitis detected by SPET/CT. Hell J Nucl Med 13:277–279

    PubMed  Google Scholar 

  32. Ortapamuk H (2004) Myopathy associated with primary biliary cirrhosis demonstrating muscle involvement on bone scanning. Clin Nucl Med 29:725–726

    Article  PubMed  Google Scholar 

  33. Yonker RA, Webster EM, Edwards NL et al (1987) Technetium pyrophosphate muscle scans in inflammatory muscle disease. Br J Rheumatol 26:267–269

    Article  CAS  PubMed  Google Scholar 

  34. von Kempis J, Kalden P, Gutfleisch J et al (1998) Diagnosis of idiopathic myositis: value of 99mtechnetium pyrophosphate muscle scintigraphy and magnetic resonance imaging in targeted muscle biopsy. Rheumatol Int 17:207–213

    Article  Google Scholar 

  35. Siegel BA, Engel WK, Derrer EC (1977) Localization of technetium-99m diphosphonate in acutely injured muscle. Relationship to muscle calcium deposition. Neurology 27:230–238

    Article  CAS  PubMed  Google Scholar 

  36. Vita G, Harris JB (1981) The uptake of 99mtechnetium diphosphonate into degenerating and regenerating muscle. A correlative histological and biochemical study. J Neurol Sci 51:339–354

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosures

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoun-Ah Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, YS., Suh, CH., Jung, JY. et al. Role of bone scan in the assessment of polymyositis/dermatomyositis. Clin Rheumatol 34, 699–706 (2015). https://doi.org/10.1007/s10067-014-2837-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-014-2837-2

Keywords

Navigation