Skip to main content

Advertisement

Log in

The impact of conventional DMARD and biological therapies on CD4+ cell subsets in rheumatoid arthritis: a follow-up study

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is an autoimmune disease characterized by abnormal prevalence of Th1, Th2, Th17, and regulatory (Treg) subsets. Some data suggest that these subsets are influenced by anti-RA agents. Follow-up studies monitoring T cell phenotype in response to therapy are limited. We investigated the alteration of CD4+ T cell subset distribution after the initiation of disease-modifying antirheumatic drug (DMARD) (with glucocorticosteroid (GCS) and methotrexate (MTX)) and anti-TNFα therapy. We enrolled 19 treatment naive (early) RA patients and initiated GCS (in a dose of 16 mg/day for 4 weeks; then 8 mg/day). MTX, 10 mg/week, was started at week 4. We also enrolled 32 RA patients unresponsive to DMARD and initiated anti-TNFα therapy: adalimumab (ADA), 40 mg/2 weeks, n = 12; etanercept (ETA), 50 mg/weeks, n = 12; or infliximab (IFX) on week 0, 2, and 6, 3 mg/kg bw, n = 8. Blood was taken before and 4 and 8 weeks after the initiation of therapy. Ten volunteers served as controls. The T cell phenotype was assessed with flow cytometry. In early RA, Th1, Th2, and Th17 prevalence was higher, while Treg prevalence was lower than normal. GCS alone decreased Th2 prevalence. GCS + MTX decreased Th17 prevalence. Immune phenotype in unresponsive RA before anti-TNF therapy was as in early RA. Four and 8 weeks after initiating anti-TNF therapy, Th1 prevalence was higher than baseline in ETA or IFX, while it was stable in ADA groups. Th2 prevalence was higher than normal in ADA or IFX, while normalized in ETA group. In each group, Treg prevalence increased, while Th17 prevalence was at the baseline. The proinflammatory immune phenotype is normalized only under GCS + MTX combination in early RA. Anti-TNFα therapy exhibit marked effects on all the cell populations investigated (except Th17); some slight differences in this action exist between ADA, ETA, and IFX therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADA:

Adalimumab

CRP:

C-reactive protein

DMARD:

Disease-modifying antirheumatic drug

ESR:

Erythrocyte sedimentation rate

ETA:

Etanercept

GCS:

Glucocorticoid

IFX:

Infliximab

LF:

Leflunomide

MCV:

Mutated citrullinated vimentin

MTX:

Methotrexate

NSAID:

Nonsteroidal antiinflammatory drug

PBMC:

Peripheral blood mononuclear cells

RA:

Rheumatoid arthritis

RF:

Rheumatoid factor

TNF:

Tumor necrosis factor

Treg:

Regulatory T cell

References

  1. Scott DL, Wolfe F, Huizinga TW (2010) Rheumatoid arthritis. Lancet 376(9746):1094–1108

    Article  PubMed  Google Scholar 

  2. Tobón GJ, Youinou P, Saraux A (2010) The environment, geo-epidemiology, and autoimmune disease: rheumatoid arthritis. J Autoimmun 35(1):10–14

    Article  PubMed  Google Scholar 

  3. Klareskog L, Catrina AI, Paget S (2009) Rheumatoid arthritis. Lancet 373(9664):659–672

    Article  CAS  PubMed  Google Scholar 

  4. Aeberli D, Seitz M, Jüni P, Villiger PM (2005) Increase of peripheral CXCR3 positive T lymphocytes upon treatment of RA patients with TNF-alpha inhibitors. Rheumatology (Oxford) 44(2):172–175

    Article  CAS  Google Scholar 

  5. Yang PT, Kasai H, Zhao LJ, Xiao WG, Tanabe F, Ito M (2004) Increased CCR4 expression on circulating CD4(+) T cells in ankylosing spondylitis, rheumatoid arthritis, and systemic lupus erythematosus. Clin Exp Immunol 138(2):342–347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Chavele KM, Ehrenstein MR (2011) Regulatory T cells in systemic lupus erythematosus and rheumatoid arthritis. FEBS Lett 585(23):3603–3610

    Article  CAS  PubMed  Google Scholar 

  7. Appel H, Loddenkemper C, Miossec P (2009) Rheumatoid arthritis and ankylosing spondylitis–pathology of acute inflammation. Clin Exp Rheumatol 27(4 Suppl 55):S15–19

    CAS  PubMed  Google Scholar 

  8. Van den Brande JM, Braat H, van den Brink GR, Versteeg HH, Bauer CA, Hoedemaeker I, van Montfrans C, Hommes DW, Peppelenbosch MP, van Deventer SJ (2003) Infliximab but not etanercept induces apoptosis in lamina propria T lymphocytes from patients with Crohn's disease. Gastroenterology 124(7):1774–1785

    Article  PubMed  Google Scholar 

  9. Benucci M, Saviola G, Manfredi M, Sarzi-Puttini P, Atzeni F (2012) Tumor necrosis factors blocking agents: analogies and differences. Acta Biomed 83(1):72–80

    CAS  PubMed  Google Scholar 

  10. Vital EM, Emery P (2008) The development of targeted therapies in rheumatoid arthritis. J Autoimmun 31(3):219–227

    Article  CAS  PubMed  Google Scholar 

  11. Szalay B, Mészáros G, Cseh Á, Ács L, Deák M, Kovács L, Vásárhelyi B, Balog A (2012) Adaptive immunity in ankylosing spondylitis: phenotype and functional alterations of T cells before and during infliximab therapy. Clin Dev Immunol 2012:808724

    Article  PubMed Central  PubMed  Google Scholar 

  12. Aarvak T, Chabaud M, Thoen J, Miossec P, Natvig JB (2000) Changes in the Th1 or Th2 cytokine dominance in the synovium of rheumatoid arthritis (RA): a kinetic study of the Th subsets in one unusual RA patient. Rheumatology (Oxford) 39(5):513–522

    Article  CAS  Google Scholar 

  13. Selmi C (2011) Autoimmunity in 2010. Autoimmun Rev 10(12):725–732

    Article  CAS  PubMed  Google Scholar 

  14. Peck A, Mellins ED (2009) Breaking old paradigms: Th17 cells in autoimmune arthritis. Clin Immunol 132(3):295–304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Shen H, Goodall JC, Hill Gaston JS (2009) Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum 60(6):1647–1656

    Article  CAS  PubMed  Google Scholar 

  16. Chen DY, Chen YM, Chen HH, Hsieh CW, Lin CC, Lan JL (2011) Increasing levels of circulating Th17 cells and interleukin-17 in rheumatoid arthritis patients with an inadequate response to anti-TNF-α therapy. Arthritis Res Ther 13(4):R126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rueda B, Fernandez-Gutierrez B, Balsa A, Pacual-Salcedo D, Lamas JR, Raya E, Gonzalez-Gay MA, Martin J (2008) Investigation of CD69 as a new candidate gene for rheumatoid arthritis. Tissue Antigens 72(3):206–210

    Article  CAS  PubMed  Google Scholar 

  18. Ortiz AM, Laffon A, Gonzalez-Alvaro I (2002) CD69 expression on lymphocytes and interleukin-15 levels in synovial fluids from different inflammatory arthropathies. Rheumatol Int 21(5):182–188

    Article  CAS  PubMed  Google Scholar 

  19. Afeltra A, Galeazzi M, Sebastiani GD, Ferri GM, Caccavo D, Addessi MA, Marcolongo R, Bonomo L (1997) Coexpression of CD69 and HLADR activation markers on synovial fluid T lymphocytes of patients affected by rheumatoid arthritis: a three-color cytometric analysis. Int J Exp Pathol 78(5):331–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Mamoune A, Durand V, Le Goff P, Pennec YL, Youinou P, Le Corre R (2000) Abnormal distribution of CD45 isoforms expressed by CD4+ and CD8+ T cells in rheumatoid arthritis. Histol Histopathol 15(2):587–591

    CAS  PubMed  Google Scholar 

  21. Kurashima K, Fujimura M, Myou S, Kasahara K, Tachibana H, Amemiya N, Ishiura Y, Onai N, Matsushima K, Nakao S (2001) Effects of oral steroids on blood CXCR3+ and CCR4+ T cells in patients with bronchial asthma. Am J Respir Crit Care Med 164(5):754–758

    Article  CAS  PubMed  Google Scholar 

  22. Xinqiang S, Fei L, Nan L, Yuan L, Fang Y, Hong X, Lixin T, Juan L, Xiao Z, Yuying S, Yongzhi X (2010) Therapeutic efficacy of experimental rheumatoid arthritis with low-dose methotrexate by increasing partially CD4+CD25+ Treg cells and inducing Th1 to Th2 shift in both cells and cytokines. Biomed Pharmacother 64(7):463–471

    Article  PubMed  Google Scholar 

  23. van Amelsfort JM, Jacobs KM, Bijlsma JW, Lafeber FP, Taams LS (2004) CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum 50(9):2775–2785

    Article  PubMed  Google Scholar 

  24. Lawson CA, Brown AK, Bejarano V, Douglas SH, Burgoyne CH, Greenstein AS, Boylston AW, Emery P, Ponchel F, Isaacs JD (2006) Early rheumatoid arthritis is associated with a deficit in the CD4+CD25high regulatory T cell population in peripheral blood. Rheumatology (Oxford) 45(10):1210–1217

    Article  CAS  Google Scholar 

  25. Jiao Z, Wang W, Jia R, Li J, You H, Chen L, Wang Y (2007) Accumulation of FoxP3-expressing CD4+CD25+ T cells with distinct chemokine receptors in synovial fluid of patients with active rheumatoid arthritis. Scand J Rheumatol 36(6):428–433

    Article  CAS  PubMed  Google Scholar 

  26. Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, Solomon M, Selby W, Alexander SI, Nanan R, Kelleher A, de St F, Groth B (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 203(7):1693–1700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, de St F, Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203(7):1701–1711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Boissier MC, Assier E, Biton J, Denys A, Falgarone G, Bessis N (2009) Regulatory T cells (Treg) in rheumatoid arthritis. Joint Bone Spine 76(1):10–14

    Article  CAS  PubMed  Google Scholar 

  29. Lina C, Conghua W, Nan L, Ping Z (2011) Combined treatment of etanercept and MTX reverses Th1/Th2, Th17/Treg imbalance in patients with rheumatoid arthritis. J Clin Immunol 31(4):596–605

    Article  PubMed  Google Scholar 

  30. Li Y, Jiang L, Zhang S, Yin L, Ma L, He D, Shen J (2011) Methotrexate attenuates the Th17/IL-17 levels in peripheral blood mononuclear cells from healthy individuals and RA patients. Rheumatol Int

  31. Shen H, Xia L, Lu J, Xiao W (2010) Infliximab reduces the frequency of interleukin 17-producing cells and the amounts of interleukin 17 in patients with rheumatoid arthritis. J Investig Med 58(7):905–908

    CAS  PubMed  Google Scholar 

  32. Yue C, You X, Zhao L, Wang H, Tang F, Zhang F, Zhang X, He W (2010) The effects of adalimumab and methotrexate treatment on peripheral Th17 cells and IL-17/IL-6 secretion in rheumatoid arthritis patients. Rheumatol Int 30(12):1553–1557

    Article  CAS  PubMed  Google Scholar 

  33. Norii M, Yamamura M, Iwahashi M, Ueno A, Yamana J, Makino H (2006) Selective recruitment of CXCR3+ and CCR5+ CCR4+ T cells into synovial tissue in patients with rheumatoid arthritis. Acta Med Okayama 60(3):149–157

    CAS  PubMed  Google Scholar 

  34. Mohan K, Issekutz TB (2007) Blockade of chemokine receptor CXCR3 inhibits T cell recruitment to inflamed joints and decreases the severity of adjuvant arthritis. J Immunol 179(12):8463–8469

    CAS  PubMed  Google Scholar 

  35. Mitoma H, Horiuchi T, Tsukamoto H, Tamimoto Y, Kimoto Y, Uchino A, To K, Harashima S, Hatta N, Harada M (2008) Mechanisms for cytotoxic effects of antitumor necrosis factor agents on transmembrane tumor necrosis factor alpha-expressing cells: comparison among infliximab, etanercept, and adalimumab. Arthritis Rheum 58(5):1248–1257

    Article  CAS  PubMed  Google Scholar 

  36. Lu TT, Zhu P, Li XY, Fan CM (2008) Functional status of T helper cells in rheumatoid arthritis and effect of etanercept. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 24(5):495–497

    CAS  PubMed  Google Scholar 

  37. Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE (2006) TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 108(1):253–261

    Article  CAS  PubMed  Google Scholar 

  38. Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA, Mauri C (2004) Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNF-alpha therapy. J Exp Med 200(3):277–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Vigna-Pérez M, Abud-Mendoza C, Portillo-Salazar H, Alvarado-Sánchez B, Cuevas-Orta E, Moreno-Valdés R, Baranda L, Paredes-Saharopulos O, González-Amaro R (2005) Immune effects of therapy with Adalimumab in patients with rheumatoid arthritis. Clin Exp Immunol 141(2):372–380

    Article  PubMed Central  PubMed  Google Scholar 

  40. Blache C, Lequerré T, Roucheux A, Beutheu S, Dedreux I, Jacquot S, Le Loët X, Boyer O, Vittecoq O (2011) Number and phenotype of rheumatoid arthritis patients' CD4+CD25hi regulatory T cells are not affected by adalimumab or etanercept. Rheumatology (Oxford) 50(10):1814–1822

    Article  CAS  Google Scholar 

  41. Berthelot JM, Maugars Y (2004) Role for suppressor T cells in the pathogenesis of autoimmune diseases (including rheumatoid arthritis). Facts and hypotheses. Joint Bone Spine 71(5):374–380

    Article  PubMed  Google Scholar 

  42. Cope AP, Londei M, Chu NR, Cohen SB, Elliott MJ, Brennan FM, Maini RN, Feldmann M (1994) Chronic exposure to tumor necrosis factor (TNF) in vitro impairs the activation of T cells through the T cell receptor/CD3 complex; reversal in vivo by anti-TNF antibodies in patients with rheumatoid arthritis. J Clin Invest 94(2):749–760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the Hungarian Scientific Research Fund (OTKA) (grant no. 101661), Social Renewal Operational Programme (grant no. TÁMOP-4.2.2.-08/1/KMR-2008-0004), and research grants from Abbott Laboratories and Pfizer. Attila Balog was supported by the Zoltán Magyary Scholarship (grant no. TÁMOP-4.2.4. A/2-11-1-2012-001). László Kovács was supported by the Bolyai János Scholarship from the Hungarian Academy of Sciences.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Szalay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szalay, B., Vásárhelyi, B., Cseh, Á. et al. The impact of conventional DMARD and biological therapies on CD4+ cell subsets in rheumatoid arthritis: a follow-up study. Clin Rheumatol 33, 175–185 (2014). https://doi.org/10.1007/s10067-013-2352-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-013-2352-x

Keywords

Navigation