Skip to main content

Advertisement

Log in

Combined Treatment of Etanercept and MTX Reverses Th1/Th2, Th17/Treg Imbalance in Patients with Rheumatoid Arthritis

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Objective

To explore the mechanism of Etanercept in the treatment of rheumatoid arthritis (RA), we investigated whether the Th1/Th2 and Th17/regulatory T cells (Treg) imbalance could be reversed by Etanercept and whether the reversal was related to the improvement of clinical indications.

Methods

We conducted a 12-week study in 40 active RA patients, of whom 20 were given a stable weekly dose of methotrexate (MTX) alone and the other ten received a combined therapy of Etanercept and MTX. Ten healthy donors were chosen as controls. Frequencies of Th1, Th2, Th17, and Treg were quantified using flow cytometry, and related serum cytokines were detected by enzyme-linked immunosorbent assay. The composite 28-joint count Disease Activity Score, erythrocyte sedimentation rate, and C-reactive protein were assessed at each visit.

Results

Percentages of IFN-γ+Th1 and IL-17+Th17 among CD4+ T cells were significantly higher, while CD4+CD25highFoxp3+ Treg were significantly lower in RA patients compared with those in healthy control. After 12 weeks of therapy of MTX single or combination of MTX and Etanercept, the circulating Th17/Treg ratio significantly decreased, while no significant difference was observed in Th1/Th2 ratio. In combined therapy group, the Th17/Treg ratio was positively correlated with the remittance of disease activity. IL-1β, TNF-α, IL-6, IL-17, and IL-23 were significantly decreased, while TGF-β was significantly elevated. The Th17/Treg ratio was positively related to TGF-β, but negatively correlated with IL-6.

Conclusion

Etanercept in combination with MTX ameliorates RA activity by normalizing the distribution of Th17 and Treg, and their related cytokines, which may partly explain the mechanism of combined therapy of Etanercept plus MTX in RA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weyand CM, Goronzy JJ. Pathogenesis of rheumatoid arthritis. Med Clin North Am. 1997;81:29–55.

    Article  PubMed  CAS  Google Scholar 

  2. Hirota K, Hashimoto M, Yoshitomi H, Tanaka S, Nomura T, Yamaguchi T, et al. T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis. J Exp Med. 2007;204:41–7.

    Article  PubMed  CAS  Google Scholar 

  3. Nissinen R, Leirisalo-Repo M, Tiittanen M, Julkunen H, Hirvonen H, Palosuo T, et al. CCR3, CCR5, interleukin 4, and interferon-gamma expression on synovial and peripheral T cells and monocytes in patients with rheumatoid arthritis. J Rheumatol. 2003;30:1928–34.

    PubMed  CAS  Google Scholar 

  4. Boissier M-C, Assier E, Falgarone G, Bessis N. Shifting the imbalance from Th1/Th2 to Th17/treg: the changing rheumatoid arthritis paradigm. Joint Bone Spine. 2008;75:373–5.

    Article  PubMed  CAS  Google Scholar 

  5. Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, et al. Foxp3 + CD25 + CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev. 2006;212:8–27.

    Article  PubMed  CAS  Google Scholar 

  6. Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol. 2007;8:345–50.

    Article  PubMed  CAS  Google Scholar 

  7. Afzali B, Lombardi G, Lechler RI, Lord GM. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol. 2007;148:32–46.

    Article  PubMed  CAS  Google Scholar 

  8. Carmona L, Gomez-Reino JJ. Survival of TNF antagonists in spondylarthritis is better than in rheumatoid arthritis. Arthritis Res Ther. 2006;8:R72.

    Article  PubMed  Google Scholar 

  9. Nistala K, Wedderburn LR. Th17 and regulatory T cells: rebalancing pro- and anti-inflammatory forces in autoimmune arthritis. Rheumatology. 2009;10:1093–8.

    Google Scholar 

  10. Ma HL, Napierate L, Stedman N. Tumor necrosis factor alpha blockade exacerbates murine psoriasis-like disease by enhancing Th17 function and decreasing expansion of Treg cells. Arthritis Rheum. 2010;62(2):430–40.

    Article  PubMed  CAS  Google Scholar 

  11. Arnett FC, Edworthy SM, Bloch DA, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31:315–24.

    Article  PubMed  CAS  Google Scholar 

  12. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7:429–42.

    Article  PubMed  CAS  Google Scholar 

  13. Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med. 2007;13:139–45.

    Article  PubMed  CAS  Google Scholar 

  14. Raza K, Falciani F, Curnow SJ, et al. Early rheumatoid arthritis is characerized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin. Arthritis Res Ther. 2005;7:R784–95.

    Article  PubMed  CAS  Google Scholar 

  15. Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. 2007;8:950–7.

    Article  PubMed  CAS  Google Scholar 

  16. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, et al. Interleukins 1 beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 2007;8:942–9.

    Article  PubMed  CAS  Google Scholar 

  17. Kageyama Y, Ichikawa T, Nagafusa T, Torikai E, Shimazu M, Nagano A. Etanercept reduces the serum levels of interleukin-23 and macrophage inflammatory protein-3 alpha in patients with rheumatoid arthritis. Rheumatol Int. 2007;28:137–43.

    Article  PubMed  CAS  Google Scholar 

  18. Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J Exp Med. 2004;200:277–85.

    Article  PubMed  CAS  Google Scholar 

  19. Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE. TNF downmodulates the function of human CD4 + CD25high T-regulatory cells. Blood. 2006;108:253–61.

    Article  PubMed  CAS  Google Scholar 

  20. Cutolo M, Sulli A, Pizzorni C, Seriolo B, Straub RH. Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis. 2001;60(8):729–35.

    Article  PubMed  CAS  Google Scholar 

  21. Papagoras C, Voulgari PV, Drosos AA. Strategies after the failure of the first anti-tumor necrosis factor alpha agent in rheumatoid arthritis. Autoimmun Rev. 2010;9:574–82.

    Article  PubMed  Google Scholar 

  22. Pascual-Salcedo D, Plasencia C, Ramiro S, Nuño L, Bonilla G, Nagore D, Ruiz Del Agua A, Martínez A, Aarden L, Martín-Mola E, Balsa A.(2011) Influence of immunogenicity on the efficacy of long-term treatment with infliximab in rheumatoid arthritis. Rheumatology (Oxford) [in press].

  23. Sarin A, Conan-Cibotti M, Henkart PA. Cyto-toxic effect of TNF and lymphotoxin on T lymphoblasts. J Immunol. 1995;155:3716–8.

    PubMed  CAS  Google Scholar 

  24. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.

    Article  PubMed  CAS  Google Scholar 

  25. Paradowska A, Maslinski W, Grzybowska-Kowalczyk A, Lacki J. The function of interleukin 17 in the pathogenesis of rheumatoid arthritis. Arch Immunol Ther Exp. 2007;55:329–34.

    Article  CAS  Google Scholar 

  26. Goldberg M, Nadiv O, Luknar-Gabor N, Agar G, Beer Y, Katz Y. Synergism between tumor necrosis factor alpha and interleukin-17 to induce IL-23 p19 expression in fibroblast-like synoviocytes. Mol Immunol. 2009;55:1854–9.

    Article  Google Scholar 

  27. Weischer M, Rocken M, Berneburg M. Calcineurin inhibitors and rapamycin: cancer protection or promotion? Exp Dermatol. 2007;16:385–93.

    Article  PubMed  CAS  Google Scholar 

  28. Kehlen A, Pachnio A, Thiele K, Langner J. Gene expression induced by interleukin-17 in fibroblast-like synoviocytes of patients with rheumatoid arthritis: upregulation of hyaluronan-binding protein TSG-6. Arthritis Res Ther. 2003;5:R186–92.

    Article  PubMed  CAS  Google Scholar 

  29. Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature. 2008;453:236–40.

    Article  PubMed  CAS  Google Scholar 

  30. Ichiyama K, Yoshida H, Wakabayashi Y, Chinen T, Saeki K, Nakaya M, et al. Foxp3 inhibits ROR{gamma}t-mediated IL-17A mRNA transcription through direct interaction with ROR{gamma}t. J Biol Chem. 2008;283:17003–8.

    Article  PubMed  CAS  Google Scholar 

  31. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Ping.

Additional information

Chen Lina and Wang Conghua contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lina, C., Conghua, W., Nan, L. et al. Combined Treatment of Etanercept and MTX Reverses Th1/Th2, Th17/Treg Imbalance in Patients with Rheumatoid Arthritis. J Clin Immunol 31, 596–605 (2011). https://doi.org/10.1007/s10875-011-9542-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-011-9542-6

Keywords

Navigation