Skip to main content

Advertisement

Log in

Application of novel ensemble models to improve landslide susceptibility mapping reliability

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Most landslides in the Eastern Golestan province in Iran occur in the Doji watershed. Their number, however, lies at the lower limit for reliable statistical analyses. By selecting a statistical sample in an area with rather homogeneous conditions (thereby reducing the number of meaningful covariates), significant insights can nevertheless be obtained. We relied on an inventory of 145 landslides which discerns between types of movement and implemented six machine learning algorithms (Decorate, DE-REPTree, Random Subspace, RS-REPTree, Dagging, and DA-REPTree) to produce landslide susceptibility maps. This allowed us to evaluate the relative importance and the effect of covariates in the models and identify factors that are consistently associated with the presence of landslides. Our results demonstrate that, even for a small landslide inventory, reliable susceptibility maps can be produced for homogeneous landscapes. We discuss that our approach could be used to assess the reliability of statistical approaches at small scales, where a distinctive trigger is lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data can be made available upon reasonable request.

References

  • Alvioli M, Marchesini I, Reichenbach P, Rossi M, Ardizzone F, Fiorucci F, Guzzetti F (2016) Automatic delineation of geomorphological slope units with r. slopeunits v1. 0 and their optimization for landslide susceptibility modeling. Geosci Model Dev 9(11):3975–3991

    Article  Google Scholar 

  • Alvioli M, Guzzetti F, Marchesini I (2020) Parameter-free delineation of slope units and terrain subdivision of Italy. Geomorphology 358:107124

    Article  Google Scholar 

  • Amatya P, Kirschbaum D, Stanley T, Tanyas H (2021) Landslide mapping using object-based image analysis and open-source tools. Eng Geol 282:106000

    Article  Google Scholar 

  • Arabameri A, Pradhan B, Rezaei K, Lee CW (2019a) Assessment of landslide susceptibility using statistical-and artificial intelligence-based FR–RF integrated model and multiresolution DEMs. Remote Sens 11:999

    Article  Google Scholar 

  • Arabameri A, Pradhan B, Rezaei K, Lee S, Sohrabi M (2019b) An ensemble model for landslide susceptibility mapping in a forested area. Geocarto Int

  • Arabameri A, Saha S, Roy J, Chen W, Blaschke T, Tien Bui D (2020) Landslide susceptibility evaluation and management using different machine learning methods in the Gallicash River Watershed, Iran. Remote Sens 12(3):475

    Article  Google Scholar 

  • Arabameri A, Sadhasivam N, Turabieh H, Mafarja M, Rezaie F, Pal SC, Santosh M (2021a) Credal decision tree based novel ensemble models for spatial assessment of gully erosion and sustainable management. Sci Rep 11(1):1–18

    Article  Google Scholar 

  • Arabameri A, Arora A, Pal SC, Mitra S, Saha A, Nalivan OA et al (2021b) K-fold and state-of-the-art metaheuristic machine learning approaches for groundwater potential modelling. Water Resour Manag 35(6):1837–1869. https://doi.org/10.1007/s11269-021-02815-5

    Article  Google Scholar 

  • Arnone E, Francipane A, Scarbaci A, Puglisi C, Noto L (2016) Effect of raster resolution and polygon-conversion algorithm on landslide susceptibility mapping. Environ Model Softw 84:467–481

    Article  Google Scholar 

  • Amato G, Eisank C, Castro-Camilo D, Lombardo L (2019) Accounting for covariate distributions in slope-unit-based landslide susceptibility models. A case study in the alpine environment. Eng Geol 260:105237

    Article  Google Scholar 

  • Böhner J, Selige T (2006) Spatial prediction of soil attributes using terrain analysis and climate regionalisation. Göttinger Geogr Abh 115:13–28

    Google Scholar 

  • Cama M, Conoscenti C, Lombardo L, Rotigliano E (2016) Exploring relationships between grid cell size and accuracy for debris-flow susceptibility models: a test in the Giampilieri catchment (Sicily, Italy). Environ Earth Sci 75(3):1–21

    Article  Google Scholar 

  • Carrara A (1983) Multivariate models for landslide hazard evaluation. J Int Assoc Math Geol 15(3):403–426

    Article  Google Scholar 

  • Chang Z, Catani F, Huang F, Liu G, Meena SR, Huang J, Zhou C (2022) Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors. J Rock Mech Geotech Eng 15(5):1127–1143

    Article  Google Scholar 

  • Chen W, Li Y (2020) GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. Catena 195:104777

    Article  Google Scholar 

  • Chen Z, Liu Z, Yin L, Zheng W (2022) Statistical analysis of regional air temperature characteristics before and after dam construction. Urban Clim 41. https://doi.org/10.1016/j.uclim.2022.101085

  • Chung C-JF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472

    Article  Google Scholar 

  • Conoscenti C, Rotigliano E, Cama M, Caraballo-Arias NA, Lombardo L, Agnesi V (2016) Exploring the effect of absence selection on landslide susceptibility models: a case study in Sicily, Italy. Geomorphology 261:222–235

    Article  Google Scholar 

  • Das I, Stein A, Kerle N, Dadhwal VK (2012) Landslide susceptibility mapping along road corridors in the Indian Himalayas using Bayesian logistic regression models. Geomorphology 179:116–125

    Article  Google Scholar 

  • Devasena CL (2014) Comparative analysis of random forest, REP tree and J48 classifiers for credit risk prediction. Int J Comput Appl 975(8887):30–36

    Google Scholar 

  • Domènech G, Fan X, Scaringi G, van Asch TW, Xu Q, Huang R, Hales TC (2019) Modelling the role of material depletion, grain coarsening and revegetation in debris flow occurrences after the 2008 Wenchuan earthquake. Eng Geol 250:34–44

    Article  Google Scholar 

  • Du G, Zhang Y, Iqbal J (2017) Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China. J Mt Sci 14:249

    Article  Google Scholar 

  • Fan X, Scaringi G, Korup O, West AJ, van Westen CJ, Tanyas H et al (2019) Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts. Rev Geophys 57(2):421–503

    Article  Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. Wiley

    Google Scholar 

  • Forestry, Rangeland and Watershed Organization (FRWO). List of landslides in the Iran; Study Group on Landslides, Office of Engineering and Design Evaluation: 2013. Available online: http://www.frw.org.ir/02/Fa/default.aspx (accessed on 2 Feb 2020)

  • Frattini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol 111:66–72

    Article  Google Scholar 

  • Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Comparing landslide inventory maps. Geomorphology 94(3-4):268–289

    Article  Google Scholar 

  • Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth-Sci Rev 162:227–252

    Article  Google Scholar 

  • Golestan Regional Water Co. (2007) Golestan province meteorological information report

  • Gorum T (2019) Tectonic, topographic and rock-type influences on large landslides at the northern margin of the Anatolian Plateau. Landslides 16(2):333–346

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72(1-4):272–299

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184. https://doi.org/10.1016/j.geomorph.2006.04.007

    Article  Google Scholar 

  • Heckmann T, Gegg K, Gegg A, Becht M (2014) Sample size matters: investigating the effect of sample size on a logistic regression susceptibility model for debris flows. Nat Hazards Earth Syst Sci 14:259–278

    Article  Google Scholar 

  • Heerdegen RG, Beran MA (1982) Quantifying source areas through land surface curvature and shape. J Hydrol 57:359–373

    Article  Google Scholar 

  • Hervás J, Bobrowsky P (2009) Mapping: inventories, susceptibility, hazard and risk. In: Landslides–disaster risk reduction. Springer, Berlin, Heidelberg, pp 321–349

    Chapter  Google Scholar 

  • Hoehler FK (2000) Bias and prevalence effects on kappa viewed in terms of sensitivity and specificity. J Clin Epidemiol 53(5):499–503

    Article  Google Scholar 

  • Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844

    Article  Google Scholar 

  • Hosmer DW Jr, Lemeshow S (2000) Applied logistic regression, 2nd edition. New York: Jhon Wiley and Sons Inc. https://doi.org/10.1002/0471722146

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194

    Article  Google Scholar 

  • Huang Y, Bárdossy A, Zhang K (2019) Sensitivity of hydrological models to temporal and spatial resolutions of rainfall data. Hydrol Earth Syst Sci 23:2647–2663. https://doi.org/10.5194/hess-23-2647-2019

    Article  Google Scholar 

  • Iranian Landslide Working Party (ILWP) (2007) Iranian landslides list. Forest, Rangeland and Watershed Association, Tehran, Iran, p 60

    Google Scholar 

  • Jia S, Dai Z, Zhou Z, Ling H, Yang Z, Qi L et al (2023) Upscaling dispersivity for conservative solute transport in naturally fractured media. Water Res 235:119844. https://doi.org/10.1016/j.watres.2023.119844

    Article  Google Scholar 

  • Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics:159–174

  • Lima P, Steger S, Glade T, Tilch N, Schwarz L, Kociu A (2017) Landslide susceptibility mapping at national scale: a first attempt for Austria. In: Workshop on World Landslide Forum. Springer International Publishing, pp 943–951

    Google Scholar 

  • Liu Y, Zhang K, Li Z, Liu Z, Wang J et al (2020) A hybrid runoff generation modelling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds. J Hydrol (Amsterdam) 590:125440. https://doi.org/10.1016/j.jhydrol.2020.125440

    Article  Google Scholar 

  • Liu C, Cui J, Zhang Z, Liu H, Huang X et al (2021) The role of TBM asymmetric tail-grouting on surface settlement in coarse-grained soils of urban area: field tests and FEA modelling. Tunn Undergr Space Technol 111:103857. https://doi.org/10.1016/j.tust.2021.103857

    Article  Google Scholar 

  • Liu Z, Xu J, Liu M, Yin Z, Liu X, Yin L et al (2023) Remote sensing and geostatistics in urban water-resource monitoring: a review. In: Marine and Freshwater Research. CSIRO Publishing. https://doi.org/10.1071/MF22167

    Chapter  Google Scholar 

  • Loche M, Scaringi G, Yunus AP, Catani F, Tanyaş H, Frodella W et al (2022a) Surface temperature controls the pattern of post-earthquake landslide activity. Sci Rep 12(1):1–11

    Article  Google Scholar 

  • Loche M, Lombardo L, Gorum T, Tanyas H, Scaringi G (2022b) Distinct susceptibility patterns of active and relict landslides reveal distinct triggers: a case in northwestern Turkey. Remote Sens 14(6):1321

    Article  Google Scholar 

  • Lombardo L, Cama M, Conoscenti C, Marker M, Rotigliano E (2015) Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy). Nat Hazards 79(3):1621–1648

    Article  Google Scholar 

  • Lombardo L, Mai PM (2018) Presenting logistic regression-based landslide susceptibility results. Eng Geol 244:14–24

    Article  Google Scholar 

  • Lombardo L, Opitz T, Huser R (2018) Point process-based modeling of multiple debris flow landslides using INLA: an application to the 2009 Messina disaster. Stoch Environ Res Risk Assess 32(7):2179–2198

    Article  Google Scholar 

  • Lombardo L, Bakka H, Tanyas H, van Westen C, Mai PM, Huser R (2019) Geostatistical modeling to capture seismic-shaking patterns from earthquake-induced landslides. J Geophys Res Earth Surf 124(7):1958–1980

    Article  Google Scholar 

  • Melville PN (2005) Creating diverse ensemble classifiers to reduce supervision. The University of Texas at Austin

    Google Scholar 

  • Pourghasemi HR, Rossi M (2017) Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods. Theor Appl Climatol 130(1):609–633

    Article  Google Scholar 

  • Quinlan JR (1987) Simplifying decision trees. Int J Man-Mach Stud 27(3):221–234

    Article  Google Scholar 

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth-Sci Rev 180:60–91

    Article  Google Scholar 

  • Saha S, Saha M, Mukherjee K, Arabameri A, Ngo PTT, Paul GC (2020) Predicting the deforestation probability using the binary logistic regression, random forest, ensemble rotational forest, REPTree: a case study at the Gumani River Basin, India. Sci Total Environ 730:139197

    Article  Google Scholar 

  • Scaringi G, Loche M (2022) A thermo-hydro-mechanical approach to soil slope stability under climate change. Geomorphology 401:108108

    Article  Google Scholar 

  • Schlögel R, Marchesini I, Alvioli M, Reichenbach P, Rossi M, Malet J-P (2018) Optimizing landslide susceptibility zonation: effects of dem spatial resolution and slope unit delineation on logistic regression models. Geomorphology 301:10–20

    Article  Google Scholar 

  • Skurichina M, Duin RP (2002) Bagging, boosting and the random subspace method for linear classifiers. Pattern Anal Appl 5(2):121–135

    Article  Google Scholar 

  • Shah Pasandzadeh M (2005) Earthquake and seismicity of Golestan province, Northeast of Iran. International Research Institute Seismology and Earthquake Engineering, Institute of Seismology, Department of Seismology

    Google Scholar 

  • Shamanian GH, Roghimi M, Yakhkashi I, Ahmadi MH, Yarmohammadi M, Dehghan H (2006) Hydrogeochemistry of groundwater resources in Gorganrood-Qarasu watershed, Golestan province. In: Proceedings of the Ninth Conference of the Iranian Geological Society. Tehran Teacher Training University, pp 190–1998

    Google Scholar 

  • Shao Z, Zhai Q, Han Z, Guan X (2023) A linear AC unit commitment formulation: an application of data-driven linear power flow model. Int J Electr Power Energy Syst 145:108673. https://doi.org/10.1016/j.ijepes.2022.108673

    Article  Google Scholar 

  • Steger S, Brenning A, Bell R, Glade T (2016a) The propagation of inventory-based positional errors into statistical landslide susceptibility models. Nat Hazards Earth Syst 16(12):2729–2745

    Article  Google Scholar 

  • Steger S, Brenning A, Bell R, Petschko H, Glade T (2016b) Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical 711 landslide susceptibility maps. Geomorphology 262:8–23

    Article  Google Scholar 

  • Steger S, Mair V, Kofler C, Pittore M, Zebisch M, Schneiderbauer S (2021) Correlation does not imply geomorphic causation in data-driven landslide susceptibility modelling–benefits of exploring landslide data collection effects. Sci Total Environ 776:145935

    Article  Google Scholar 

  • Tang R, Fan X, Scaringi G, Xu Q, van Westen CJ, Ren J, Havenith HB (2019) Distinctive controls on the distribution of river-damming and non-damming landslides induced by the 2008 Wenchuan earthquake. Bull Eng Geol Environ 78(6):4075–4093

    Article  Google Scholar 

  • Tanyas H, Rossi M, Alvioli M, van Westen CJ, Marchesini I (2019) A global slope unit-based method for the near real-time prediction of earthquake-induced landslides. Geomorphology 327:126–146

    Article  Google Scholar 

  • Ting KM, Witten IH (1997) Stacking bagged and dagged models. (Working paper 97/09). Hamilton, New Zealand: University of Waikato, Department of Computer Science

  • Titti G, vanWesten C, Borgatti L, Pasuto A, Lombardo L (2021) When is enough really enough? On the minimum number of landslides to build reliable susceptibility models. Geosciences 11(469). https://doi.org/10.3390/geosciences11110469

  • Titti G, Sarretta A, Lombardo L, Crema S, Pasuto A, Borgatti L (2022a) Mapping susceptibility with open-source tools: a new plugin for QGIS. Front Earth Sci 10:842425. https://doi.org/10.3389/feart.2022.842425

    Article  Google Scholar 

  • Titti G, Napoli GN, Conoscenti C, Lombardo L (2022b) Cloud-based interactive susceptibility modeling of gully erosion in Google Earth Engine. Int J Appl Earth Obs Geoinf 115:103089

    Google Scholar 

  • Van Den Eeckhaut M, Hervas J, Jaedicke C, Malet J-P, Montanarella L, Nadim F (2012) Statistical modelling of europe-wide landslide susceptibility using limited landslide inventory data. Landslides 9(3):357–369

    Article  Google Scholar 

  • Van Westen CJ, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65:167–184

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. Spec Rep 176:11–33

    Google Scholar 

  • Wang G, Zhao B, Lan R, Liu D, Wu B, Li Y et al (2022) Experimental study on failure model of tailing dam overtopping under heavy rainfall. Lithosphere 2022(Special 10). https://doi.org/10.2113/2022/5922501

  • Xie X, Tian Y, Wei G (2022) Deduction of sudden rainstorm scenarios: integrating decision makers’ emotions, dynamic Bayesian network and DS evidence theory. Nat Hazards. https://doi.org/10.1007/s11069-022-05792-z

  • Yilmaz I, Ercanoglu M (2019) Landslide inventory, sampling and effect of sampling strategies on landslide susceptibility/hazard modelling at a glance. In: Natural hazards GIS-based spatial modeling using data mining techniques. Springer, Cham, pp 205–224

    Chapter  Google Scholar 

  • Yin L, Wang L, Keim BD, Konsoer K, Zheng W (2022) Wavelet analysis of dam injection and discharge in Three Gorges Dam and reservoir with precipitation and river discharge. Water 14(4):567. https://doi.org/10.3390/w14040567

    Article  Google Scholar 

  • Yin L, Wang L, Tian J, Yin Z, Liu M et al (2023) Atmospheric density inversion based on swarm-C satellite accelerometer. Appl Sci 13(6). https://doi.org/10.3390/app13063610

  • Yue Z, Zhou W, Li T (2021) Impact of the Indian Ocean dipole on evolution of the subsequent ENSO: relative roles of dynamic and thermodynamic processes. J Clim 34(9):3591–3607. https://doi.org/10.1175/JCLI-D-20-0487.1

    Article  Google Scholar 

  • Zêzere JL, Pereira S, Melo R, Oliveira SC, Garcia RA (2017) Mapping landslide susceptibility using data-driven methods. Sci Total Environ 589:250–267

    Article  Google Scholar 

  • Zhang Y, Luo J, Zhang Y, Huang Y, Cai X, Yang J et al (2022a) Resolution enhancement for large-scale real beam mapping based on adaptive low-rank approximation. IEEE Trans Geosci Remote Sens 60:1–21. https://doi.org/10.1109/TGRS.2022.3202073

    Article  Google Scholar 

  • Zhang C, Yin Y, Yan H, Zhu S, Li B, Hou X et al (2022b) Centrifuge modeling of multi-row stabilizing piles reinforced reservoir landslide with different row spacings. Landslides. https://doi.org/10.1007/s10346-022-01994-5

  • Zhao F, Song L, Peng Z, Yang J, Luan G, Chu C et al (2021) Night-time light remote sensing mapping: construction and analysis of ethnic minority development index. Remote Sens (Basel, Switzerland) 13(11):2129. https://doi.org/10.3390/rs13112129

    Article  Google Scholar 

  • Zhou G, Zhou X, Song Y, Xie D, Wang L, Yan G et al (2021) Design of supercontinuum laser hyperspectral light detection and ranging (LiDAR) (SCLaHS LiDAR). International journal of remote sensing 42(10):3731–3755. https://doi.org/10.1080/01431161.2021.1880662

    Article  Google Scholar 

  • Zhu X, Xu Z, Liu Z, Liu M, Yin Z, Yin L et al (2022) Impact of dam construction on precipitation: a regional perspective. Marine and Freshwater Research. https://doi.org/10.1071/MF22135

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Arabameri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Appendix

Appendix

Table 5 Multicollinearity results for landslide conditioning factors. The variables were computed following the indication of several works (e.g., Heerdegen and Beran 1982; Forman and Godron 1986; Böhner and Selige 2006; Lombardo and Mai 2018)
Table 6 Relationship between landslide conditioning factors and landslides using the frequency ratio model
Table 7 Description of the lithology units in the study area
Table 8 General properties of the landslide inventory
Table 9 Percentage values of each susceptibility class and ASCII values for each model
Fig. 6
figure 6

Landslide conditioning factors

Fig. 7
figure 7

Flowchart of research in the study area

Fig. 8
figure 8

Some examples of landslides in the study area

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Z.l., Guan, Q.t., Arabameri, A. et al. Application of novel ensemble models to improve landslide susceptibility mapping reliability. Bull Eng Geol Environ 82, 309 (2023). https://doi.org/10.1007/s10064-023-03328-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-023-03328-8

Keywords

Navigation