Skip to main content
Log in

A new geological model for Spriana landslide

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Complex large landslides are characterized by different kinematic behaviors and involve diverse materials. Both elements make it difficult to study the instability of these huge mass movements, which may cause massive damage and affect extended areas. This paper is focused on the study of Spriana landslide, an important rockslide located in the North of Italy. Starting from the geological interpretation provided by Belloni and Gandolfo (Geologia tecnica ed ambientale 3:7–36, 1997), the authors gather all available data sets and perform a novel analysis aimed to better describe the unstable body. The key point of this case study regards the characterization of the deeper surface of failure. The location as well as the continuity of this surface is a crucial unsolved question, and in this paper we try to provide a reasonable answer. We propose a new hypothesis based on a structurally controlled, wedge-like rockslide involving the presence of a composed deeper surface of failure constrained by the intersection of two different weak zones. Although this work mainly addresses the development of a new geological model, numerical simulations were also performed. Both continuous and discontinuous models were tested, and then a comparison of the outcomes of the numerical simulations was performed to define the best fit to the observed landslide behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aleotti P, Chowdury R (1999) Landslide hazard assessment: summary review and new prospective. Bull Eng Geol Environ 58(1):21–44

    Article  Google Scholar 

  • Ballantyne C-K (2002) Paraglacial geomorphology. Quat Sci Rev 2:1935–2017

    Article  Google Scholar 

  • Belloni L, Gandolfo M (1997) La frana di Spriana. Geologia tecnica ed ambientale 3:7–36 (in Italian)

    Google Scholar 

  • Bonnard C, Dewarrat X, Noverraz F (2004) The Sedrun landslide. In: Bonnard C, Forlati F, Scavia C (eds) Identification and mitigation of large landslide risks in Europe: advances in risk assessment. IMIRILAND Project. Balkema, Leiden, pp 227–252

    Google Scholar 

  • Brideau M-A, Yan M, Stead D (2009) The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology 103(1):30–49

    Article  Google Scholar 

  • Brideau M-A, McDougall S, Stead D, Evans GS, Couture R, Turner K (2012) Three-dimensional distinct element modelling and dynamic runout analysis of a landslide in gneissic rock, British Columbia, Canada. Bull Eng Geol Environ 71(3):467–486

    Article  Google Scholar 

  • Brown ET (2008) Estimating the mechanical properties of rock masses. In: Potvin Y, Carter J, Dyskin A, Jeffrey R (eds) SHIRMS 2008. Australian Centre for Geomechanics, Perth, pp 3–22

    Google Scholar 

  • Brugner W (1961) Sul movimento franoso nel territorio di Spriana. Servizio Geologico d’Italia (in Italian)

  • Brugner W (1963) Ulteriori osservazioni sulla frana di Spriana. Servizio Geologico d’Italia (in Italian)

  • Brugner W (1964) Primo esame di cunicoli in corso d’opera nella frana di Spriana. Servizio Geologico d’Italia (in Italian)

  • Calvetti F, Crosta GB, Tatarella M (2000) Numerical simulation of dry granular flows: from the reproduction of small-scale experiments to the prediction of rock avalanches. Rivista Italiana di Geotecnica 2:21–38

    Google Scholar 

  • Campbell CS, Cleary PW, Hopkins M (1995) Large-scale landslides simulations: global deformation, velocities and basal friction. J Geophys Res 100(B5):8267–8283

    Article  Google Scholar 

  • Cancelli A (1986) Problemi geologico-tecnici della frana di Spriana. Atti del Convegno Valmalenco. Natura 1, 27–29 sett. 1986:158–176 (in Italian)

  • Cancelli A, Coffano F, Villa F (1979) Relazioni sulle indagini eseguite e eseguende con riferimento alla frana di Spriana. Commissione tecnica Regionale per la frana di Spriana (in Italian)

  • Catane SG, Cabria HB, Zarco MAH, Saturay RM Jr, Mirasol-Robert AA (2008) The 17 February 2006 Guinsaugon rock slide-debris avalanche, Southern Leyte, Philippines: deposit characteristics and failure mechanism. Bull Eng Geol Environ 67(3):305–320

    Article  Google Scholar 

  • Crosta GB, Calvetti F, Imposimato S, Roddeman D, Frattini P, Agliardi F (2001) Granular flows and numerical modelling of landslides. Report of DAMOCLES project August 2001, CNR

  • Crosta GB, Imposimato S, Roddeman DG (2003) Numerical modeling of large landslides stability and runout. Nat Hazards Earth Syst Sci 3:523–538

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide investigation and mitigation. Special report 247, vol 3. Transportation Research Board US National Research Board, US National Research Council, Washington DC, pp 36–75

  • Cundall PA (1971) A computer model for simulating progressive, large-scale movements in blocky rock systems. In: Proceedings of the international symposium on rock fracture, Nancy, II-8

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87

    Article  Google Scholar 

  • Discenza ME, Esposito C, Martino S, Petitta M, Prestininzi A, Scarascia Mugnozza G (2011) The gravitational slope deformation of Mt. Rocchetta ridge (central Apennines, Italy): geological-evolutionary model and numerical analysis. Bull Eng Geol Environ 70:559–575

    Article  Google Scholar 

  • Eberhardt E, Stead D, Coggan JS (2004) Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa Rockslide. Int J Rock Mech Min Sci 41(1):69–87

    Article  Google Scholar 

  • Einstein HH (1988) Special lecture: landslide risk assessment procedure. In Bonnard C (ed) Proceedings of the 5th international symposium on landslides, Lausanne (CH) 10–15 July 2, pp 1075–1090

  • Fukawa T, Ohnishi Y, Nishiyama S, Uehara S, Miki S (2005) Three dimensional discontinuous deformation analysis for rockfall simulation. In: Barla G, Barla M (eds) 11th IACMAG conference, pp 513–520

  • Futalan KM, Biscaro JRD, Saruray RM, Catane SG, Amora MS, Villaflor EL (2010) Assessment of potential slope failure sites at Mt. Can-abag, Guinsaugon, Philippines, based on stratigraphy and rock strength. Bull Eng Geol Environ 69:517–521

    Article  Google Scholar 

  • Gattinoni P, Scesi L, Arieni L, Canavesi M (2012) The February 2010 large landslide at Maierato, Vibo Valentia, Southern Italy. Landslides 9:255–261

    Article  Google Scholar 

  • Gonzales E, Herreros MI, Pastor M, Quecedo M, Fernandez Merodo JA (2003) Discrete and continuum approaches for fast landslide modelling. In: Konietzky H (ed) 1st International symposium on numerical modeling in micromechanics via particle methods, Swets and Zeitlinger, Lisse, pp 307–313

  • Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186

    Article  Google Scholar 

  • Howard KA (1973) Avalanche mode of motion: implications from lunar examples. Science 180:1052–1055

    Article  Google Scholar 

  • Hsu K (1975) Catastrophic debris streams (sturzstroms) generated by rockfalls. Geol Soc Am Bull 86:129–140

    Article  Google Scholar 

  • Hungr O, Corominas J, Eberhardt E (2005) Estimating landslide motion mechanism, travel distance and velocity. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor & Francis Group, Vancouver, pp 99–128

    Google Scholar 

  • International Society of Rock Mechanics ISRM (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr 15:319–368

    Article  Google Scholar 

  • Istituto Sperimentale Modelli e Strutture ISMES - Cogefar- Cariboni (1990a) Frana di Spriana: Indagini ed ulteriori studi nel versante in frana. Cunicolo Esplorativo (in Italian)

  • Istituto Sperimentale Modelli e Strutture ISMES - Cogefar- Cariboni (1990b) Frana Spriana: Rapporti Complementari. Aree di invasione della frana. Rapporto finale (in Italian)

  • Itasca (2005) Flac 3D user’s manual. Itasca Consulting Group Inc., Minnesota

    Google Scholar 

  • Itasca (2008) 3DEC user’s guide. Itasca Consulting Group Inc., Minnesota

    Google Scholar 

  • Jing L, Hudson JA (2002) Numerical methods in rock mechanics. Int J Rock Mech Min Sci 39:409–427

    Article  Google Scholar 

  • Kalenchuk KS, Hutchinson DJ, Diederichs MS (2013) Downie Slide: numerical simulation of groundwater fluctuations influencing the behavior of a massive landslide. Bull Eng Geol Environ 72:397–412

    Article  Google Scholar 

  • Koo CY, Chern JC (1998) Modification of the DDA method for rigid block problems. Int J Rock Mech Min Sci 35(6):683–693

    Article  Google Scholar 

  • Geoprospecting s.r.l (1990) Indagine geofisica mediante sismica a rifrazione eseguita in località Case Cucchi nel Comune di Spriana (SO) (in Italian)

  • Longoni L, Papini M, Brambilla D, Arosio D, Zanzi L (2013) The role of shear surface geometry in the definition of deep seated gravitational slope deformation thresholds. In: Kwasniewski M, Łydzba D (eds) Rock mechanics for resources, energy and environment. Taylor & Francis Group, London, pp 654–658

    Google Scholar 

  • Marcato G, Silvano S, Zabuski L (2005) Modellazione di ammassi rocciosi instabili con il metodo degli elementi distinti. Giornale di Geologia Applicata 2:87–92 (in Italian)

    Google Scholar 

  • Marinos V, Marinos P, Hoek E (2005) The geological strength index: applications and limitations. Bull Eng Geol Environ 64(1):55–65

    Article  Google Scholar 

  • Palmer D (1981) An introduction to the generalized reciprocal method of seismic refraction interpretation. Geophysics 46:1508–1518

    Article  Google Scholar 

  • Papini M, Mannucci G, Longoni L, Caimi A (2005) Il ruolo delle rocce deboli nella definizione del modello fisico della frana di Spriana. Quaderni di Geologia Applicata 12(2):57–70 (in Italian)

    Google Scholar 

  • Phillips WS, Fehler MC (1991) Travel time tomography: a comparison of popular methods. Geophysics 56:1639–1649

    Article  Google Scholar 

  • Pirulli M (2009) The Thurwieser rock avalanche (Italian Alps): description and dynamic analysis. Eng Geol 109:80–92

    Article  Google Scholar 

  • Revellino P, Hungr O, Guadagno FM, Evans SG (2004) Velocity and runout simulation of destructive debris flow and debris avalanches in pyroclastic deposits, Campania region, Italy. Environ Geol 45:295–311

    Article  Google Scholar 

  • Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215

    Article  Google Scholar 

  • Scavia C, Barla G, Bernaudo V (1990) Probabilistic stability analysis of block toppling failure in rock slopes. Int J Mech Min Sci Geomech Abstr 27(6):465–478

    Article  Google Scholar 

  • Scheiddeger A (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 5:231–236

    Article  Google Scholar 

  • Shi GH (1988) Discontinuous deformation analysis—a new numerical model for the static and dynamics of block systems. Phd Dissertation; Depth Civil Engineering. University of California Berkeley

  • Sitharam TG, Sridevi J, Shimizu N (2001) Practical equivalent continuum characterization of jointed rock masses. Int J Rock Mech Min Sci 38:437–448

    Article  Google Scholar 

  • Sitharam TG, Maji VB, Verma AK (2007) Practical equivalent continuum model for simulation of jointed rock mass using FLAC 3D. Int J Geomech 7:389–395

    Article  Google Scholar 

  • Stead D, Eberhardt E, Coggan JS (2006) Developments in the characterization of complex rock slope deformation and failure using numerical modeling techniques. Eng Geol 83:217–235

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tian Chi L (1983) A mathematical model for predicting the extent of a major rockfall. Zeitschrift fuer Geomorphologie 4:473–482

    Google Scholar 

  • Tommasi P, Consorti C, Campedel P, Ribacchi R (2003) Analysis of rock avalanches generated by planar rock slides on high mountain slopes. In: Picarelli L, Cascini L (eds) International conference on fast slope movements Naples, pp 503–510

  • Tommasi P, Campedel P, Consorti C, Ribacchi R (2008) A discontinuous approach to the numerical modelling of rock avalanche. Rock Mech Rock Eng 41:37–58

    Article  Google Scholar 

  • Welkner D, Eberhardt E, Hermanns RL (2010) Hazard investigation of the Portillo Rock Avalanche site, Central Andes, Chile, using an integrated field mapping and numerical modelling approach. Eng Geol 114:278–297

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ing. Antonella Caimi, Dott. Gregorio Mannucci, Dott. Leonardo La Rocca and Dott. Alessandro Ballini for their assistance in field investigations. The help of Ing. Valentina Melillo is also acknowledged. The comments and suggestions of two anonymous reviewers significantly improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Longoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longoni, L., Papini, M., Arosio, D. et al. A new geological model for Spriana landslide. Bull Eng Geol Environ 73, 959–970 (2014). https://doi.org/10.1007/s10064-014-0610-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-014-0610-z

Keywords

Navigation