Skip to main content
Log in

Landslide kinematics inferred from in situ measurements: the Cliets rock-slide (Savoie, French Alps)

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

This paper presents an analysis of two large rock toppling/sliding events which occurred in January 2014 and February 2019 at the Cliets unstable slope (Savoie, French Alps). To understand the mechanism involved and its control by external forcings, a multi-technique analysis approach is used combining geological observations, meteorological data analysis, topographic measurements and simple physical modeling. The pre-failure stage of the events is more particularly analyzed. No direct relationships are found between triggering factors and surface motion though a kinematics analysis highlights the transition toppling-sliding. It showed that, at first order, this transition occurred 4 years before the first failure of 2014, while it happened 2 months before the second failure of 2019. From this date, the environment is considered like a block sliding on an inclined plane. By applying a frictional model (Helmstetter et al. in Journal of Geophysical Research: Solid Earth 109(B2), 2004), we illustrated that the two events belong to an unstable velocity-weakening sliding regime. The time to failure (Voight in Science 243(4888):200–203, 1989) is forecasted with the model, and the results are consistent with the observations. They confirm that the gravitational factor is predominant over the triggering factors for the two events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Angeli MG, Gasparetto P, Menotti RM, Pasuto A, Silvano S (1996) A visco-plastic model for slope analysis applied to a mudslide in Cortina d’Ampezzo, Italy. Q J Eng Geol Hydrogeol 29(3):233–240

    Article  Google Scholar 

  • Baudin E (2015) Gorges de l’ARly (Savoie): Synthèse géologique et géotechnique préliminaire. Tech. rep., BRGM

  • Carlà T, Farina P, Intrieri E, Ketizmen H, Casagli N (2018) Integration of ground-based radar and satellite insar data for the analysis of an unexpected slope failure in an open-pit mine. Eng Geol 235:39–52

    Article  Google Scholar 

  • Carlà T, Intrieri E, Di Traglia F, Nolesini T, Gigli G, Casagli N (2017) Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses. Landslides 14(2):517–534

    Article  Google Scholar 

  • Crosta G, Agliardi F (2003) Failure forecast for large rock slides by surface displacement measurements. Can Geotech J 40:176–191

    Article  Google Scholar 

  • Cruden D, Hu XQ, Lu Z (1993) Rock topples in the highway cut West of Clairvaux Creek, Jasper, Alberta. Can Geotech J 30(6):1016–1023

    Article  Google Scholar 

  • Cruden DM,  Varnes DJ (1996) Landslide: investigation and mitigation. Chapter 3 - Landslide types and processes. Transportation Research Board Special Report 247

  • Dieterich J (2007) Applications of rate- and state-dependent friction to models of fault slip and earthquake occurrence. In: Earthquake Seismology,  vol. 4. pp. 107–129

  • Dussauge-Peisser C, Helmstetter A, Grasso JR, Hantz D, Desvarreux P, Jeannin M, Giraud A (2002) Probabilistic approach to rock fall hazard assessment: potential of historical data analysis. Nat Hazards Earth Syst Sci 2(1/2):15–26. http://www.hal-00330877

    Article  Google Scholar 

  • Emery JJ (1978) Simulation of slope creep. In Developments in Geotechnical Engineering, vol. 14. Elsevier,  pp. 669–691

  • Engels F, Grunberg M (2013) Information system evolution at the French National Network of Seismic Survey (bcfs-renass). AGUFM 2013, IN53A–1550

  • Favre JL, Gervreau E, Durville JL (1992) Prévoir l’évolution des mouvements de terrain. Rev Fr Géotech 59:65–73

    Article  Google Scholar 

  • Federico A, Popescu M, Elia G, Fidelibus C, Internò G, Murianni A (2012) Prediction of time to slope failure: a general framework. Environ Earth Sci 66(1):245–256

    Article  Google Scholar 

  • Follacci JP, Guardia, P, Ivaldi, JP (1988) Le glissement de la Clapière (Alpes-Maritimes, France) dans son cadre géodynamique. In: International Symposium on Landslides, vol. 5. pp. 1323–1327

  • Fukuzono TA (1985) new method for predicting the failure time of a slope. In Proceedings of 4th International Conference and Field Workshop on Landslide. pp. 145–150

  • Giannecchini R, Galanti Y, D’Amato Avanzi G (2012) Critical rainfall thresholds for triggering shallow landslides in the Serchio River Valley (Tuscany, Italy). Nat Hazards Earth Syst Sci 12:829–842

    Article  Google Scholar 

  • Glastonbury J, Fell R (2010) Geotechnical characteristics of large rapid rock slides. Can Geotech J 47(1):116–132

    Article  Google Scholar 

  • Glueer F, Loew S, Manconi A, Aaron J (2019) From toppling to sliding: progressive evolution of the moosfluh landslide, switzerland. J Geophys Res Earth Surf 124(12):2899–2919

    Article  Google Scholar 

  • Goguel J (1957) Bulletin bibliographique des Alpes françaises pour 1956. Rev Geogr Alp 45(3):595–610

    Google Scholar 

  • Goodman R, Bray J (1976) Toppling of rock slopes. In Specialty Conference on Rock Engineering for Foundations and Slopes, vol. 2. pp. 201–234

  • Grämiger LM, Moore JR, Gischig VS, Ivy-Ochs S, Loew S (2017) Beyond debuttressing: Mechanics of paraglacial rock slope damage during repeat glacial cycles. J Geophys Res Earth Surf 122(4):1004–1036

    Article  Google Scholar 

  • Guo S, Qi S, Yang G, Zhang S, Saroglou C (2017) An analytical solution for block toppling failure of rock slopes during an earthquake. Appl Sci 7(10):1008

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17

    Article  Google Scholar 

  • Handwerger AL, Rempel AW, Skarbek RM, Roering JJ, Hilley GE (2016) Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides. Proc Natl Acad Sci 113(37):10281–10286

    Article  Google Scholar 

  • Helmstetter A, Sornette D, Grasso J-R, Andersen JV, Gluzman S, Pisarenko V (2004) Slider block friction model for landslides: Application to vaiont and la clapiere landslides. J Geophys Res Solid Earth 109(B2)

  • Hock R (2003) Temperature index melt modelling in mountain areas. J Hydrol 282(1–4):104–115

    Article  Google Scholar 

  • Hoek E, Bray JD (1981) Rock slope engineering. CRC Press

  • Hutchinson JN (1988) General report: Morphological and geotechnical parameters pf landslides in relation to geology and hydrogeology. In: Fifth International Symposium on Landslides, vol. 1. pp. 3–35

  • Jeannin M (2001) Approches quantitatives de l’érosion des versants rocheux. Master’s thesis, Lirigm, Univ. Joseph Fourier, Grenoble

  • Jesus CC, Oliveira SC, Sena C, Marques F (2018) Understanding constraints and triggering factors of landslides: Regional and local perspectives on a drainage basin. Geosciences 8(1):2. https://doi.org/10.3390/geosciences8010002

    Article  Google Scholar 

  • Kasperski J (2008) Confrontation des données de terrain et de l’imagerie multi-sources pour la compréhension de la dynamique des mouvements de versants. PhD thesis, Université Claude Bernard - Lyon I

  • Keefer DK (1994,) The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions. In: Geomorphology and Natural Hazards. Elsevier, pp. 265–284

  • Kustas WP, Rango A, Uijlenhoet R (1994) A simple energy budget algorithm for the snowmelt runoff model. Water Resour Res 30(5):1515–1527

    Article  Google Scholar 

  • Lorier L, Lescurier A, Mathy A, Desrues M, Brenguier O, Malet J (2019) Éboulements des Cliets dans les gorges de l’Arly (Savoie, France): deux épisodes remarquables (2014, 2019)

  • Marc O, Meunier P, Hovius N (2017) Prediction of the area affected by earthquake-induced landsliding based on seismological parameters. Nat Hazards Earth Syst Sci (NHESS) 17:1159–1175

    Article  Google Scholar 

  • Marc O, Stumpf A, Malet JP, Gosset M, Uchida T, Chiang SH (2018) Initial insights from a global database of rainfall-induced landslide inventories: the weak influence of slope and strong influence of total storm rainfall. Earth Surf Dyn 6:4

    Google Scholar 

  • Martha TR, Roy P, Mazumdar R, Govindharaj KB, Kumar KV (2017) Spatial characteristics of landslides triggered by the 2015 m w 7.8 (Gorkha) and Mw 7.3 (Dolakha) earthquakes in Nepal. Landslides 14(2):697–704

  • Mathy A, Lorier, L (2013) RD1212 PR9+300, Gorges de l’Arly, Secteur des Cliets, Eude géotechnique. Tech. rep., SAGE

  • Mathy A, Lorier L (2014) RD1212 - Gorges de l’Arly, Secteur des Cliets, Suivi annuel - année 2014. Tech. rep., SAGE

  • Mathy A, Lorier, L (2018) RD1212 - Gorges de l’Arly, Secteur des Cliets, Suivi annuel - année 2018. Tech. rep., SAGE

  • Merrien-Soukatchoff V, Quenot X, Guguelmi Y (2001) Modélisation par éléments distincts du phénomène de fauchage gravitaire. application au glissement de la Clapière (Saint-Etienne-de-Tinée, Alpes-Maritimes). Revue Française de Eéotechnique 95-96:133–142

  • Mirgon C, Leroi E, Mouroux P, Bour M (1993) la propagation en grande masse des mouvements de terrain : inventaire et analyse des modèles existants. Tech. rep., BRGM

  • Moussav M, Wyseure G, Feyen J (1989) Estimation of melt rate in seasonally snow-covered mountainous areas. Hydrol Sci J 34(3):249–263

    Article  Google Scholar 

  • Nichol SL (2000) Examination of toppling behaviour in large rock slopes using the UDEC computer code. PhD thesis, University of British Columbia

  • Nichol SL, Hungr O, Evans S (2002) Large-scale brittle and ductile toppling of rock slopes. Can Geotech J 39(4):773–788

    Article  Google Scholar 

  • Oppikofer T, Jaboyedoff M, Keusen HR (2008) Collapse at the eastern eiger flank in the swiss alps. Nat Geosci 1(8):531–535

    Article  Google Scholar 

  • Oudin L, Hervieu F, Michel C, Perrin C, Andréassian V, Anctil F, Loumagne C (2005) Which potential evapotranspiration input for a lumped rainfall-runoff model?: Part 2-Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling. J Hydrol 303(1):290–306

    Article  Google Scholar 

  • Pereira L, Lana M, Melo F, Lopes P (2013) Modeling aspects of block toppling in rock slopes. vol 1. pp. 463–474

  • Petley D (2004) The evolution of slope failures: mechanisms of rupture propagation. Nat Hazards Earth Syst Sci 4(1):147–152

    Article  Google Scholar 

  • Picarelli L, Olivares L, Comegna L, Damiano E (2008) Mechanical aspects of flow-like movements in granular and fine grained soils. Rock Mech Rock Eng 41(1):179

    Article  Google Scholar 

  • Polemio M, Petrucci O (2000) Rainfall as a landslide triggering factor: an overview of recent international research, Thomas Telford Ltd., pp 1219–1226

  • Pothérat P (2005) Les gorges de l’Arly, RN 212 - Liaison Ugine-Mégève. Etude géologique et géomorphologique du secteur instable du tunnel des Cliets. Données instrumentales, application au diagnostic de stabilité. Tech. rep., INTERREG IIIA

  • Rodrıguez C, Bommer J, Chandler R (1999) Earthquake-induced landslides: 1980–1997. Soil Dyn Earthq Eng 18(5):325–346

    Article  Google Scholar 

  • Rose N, Hungr O (2007) Forecasting potential rock slope failure in open pit mines using the inverse-velocity method. Int J Rock Mech Min Sci 44:308–320

    Article  Google Scholar 

  • Rotaru A, Oajdea D, Răileanu P (2007) Analysis of the landslide movements. Int J Geosci 1(3):70–79

    Google Scholar 

  • Satopaa V, Albrecht J, Irwin D, Raghavan B (2011) Finding a “kneedle” Detecting knee points in system behavior. In: 2011 31st international conference on distributed computing systems workshops. pp. 166–171

  • Scoppettuolo MR, Cascini L, Babilio E (2020) Typical displacement behaviours of slope movements. Landslides 17(5):1105–1116

    Article  Google Scholar 

  • Sornette D, Helmstetter A, Andersen JV, Gluzman S, Grasso J-R, Pisarenko V (2004) Towards landslide predictions: two case studies. Physica A: Statistical Mechanics and its Applications 338(3–4):605–632

    Article  Google Scholar 

  • Tamrakar NK, Yokota S, Osaka O (2002) A toppled structure with sliding in the Siwalik Hills, midwestern Nepal. Eng Geol 64(4):339–350

    Article  Google Scholar 

  • Teja TS, Dikshit A, Satyam N (2019) Determination of rainfall thresholds for landslide prediction using an algorithm-based approach: Case study in the Darjeeling Himalayas, India. Geosciences 9(7):302

    Article  Google Scholar 

  • Van Asch TW, Malet JP (2009) Flow-type failures in fine-grained soils: an important aspect in landslide hazard analysis. Nat Hazards Earth Syst Sci 9(5):1703–1711

    Article  Google Scholar 

  • Van Mullem J, Garen D, Woodward D, Mockus V (2004) Chapter 11: Snowmelt, part 630 hydrology national engineering handbook. US Dept. of Agriculture Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. Special Report 176:11–33

    Google Scholar 

  • Vengeon JM (1998) Déformation et rupture des versants en terrain métamorphique anisotrope. Apport de l’étude des Ruines de Séchilienne. PhD thesis, Université Joseph-Fourier-Grenoble I

  • Voight B (1989) A relation to describe rate-dependent material failure. Science 243(4888):200–203

    Article  Google Scholar 

  • Wyllie DC (1980) Toppling rock slope failures examples of analysis and stabilization. Rock Mech 13(2):89–98

    Article  Google Scholar 

  • Zêzere JL, de Brum Ferreira A, Rodrigues ML (1999) The role of conditioning and triggering factors in the occurrence of landslides: a case study in the area north of lisbon (portugal). Geomorphology 30(1–2):133–146

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by CNRS/Institut de Physique du Globe de Strasbourg (IPGS) and the Societe Alpine de Géotechnique (SAGE) as part of a CIFRE/ANRT research contract, and by the departmental council of the Savoie (dept. 73). The project benefits from additional funding by Council of Europe / EUR-OPA Major Hazards Agreement (Strasbourg, France) part of the CERG-GHHD project “Operational testing and diffusion of innovative and cost-effective monitoring systems for the monitoring and early warning of geohazards affecting watersheds and critical infrastructures”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathilde Desrues.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desrues, M., Malet, JP., Brenguier, O. et al. Landslide kinematics inferred from in situ measurements: the Cliets rock-slide (Savoie, French Alps). Landslides 19, 19–34 (2022). https://doi.org/10.1007/s10346-021-01726-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-021-01726-1

Keywords

Navigation