Skip to main content
Log in

Differential requirement of Oryza sativa RAR1 in immune receptor-mediated resistance of rice to Magnaporthe oryzae

  • Research Article
  • Published:
Molecules and Cells

Abstract

The required for Mla12 resistance (RAR1) protein is essential for the plant immune response. In rice, a model monocot species, the function of Oryza sativa RAR1 (OsRAR1) has been little explored. In our current study, we characterized the response of a rice osrar1 T-DNA insertion mutant to infection by Magnaporthe oryzae, the causal agent of rice blast disease. osrar1 mutants displayed reduced resistance compared with wild type rice when inoculated with the normally virulent M. oryzae isolate PO6-6, indicating that OsRAR1 is required for an immune response to this pathogen. We also investigated the function of OsRAR1 in the resistance mechanism mediated by the immune receptor genes Pib and Pi5 that encode nucleotide binding-leucine rich repeat (NB-LRR) proteins. We inoculated progeny from Pib/osrar1 and Pi5/osrar1 heterozygous plants with the avirulent M. oryzae isolates, race 007 and PO6-6, respectively. We found that only Pib-mediated resistance was compromised by the osrar1 mutation and that the introduction of the OsRAR1 cDNA into Pib/osrar1 rescued Pib-mediated resistance. These results indicate that OsRAR1 is required for Pib-mediated resistance but not Pi5-mediated resistance to M. oryzae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, G., Jeong, D.H., Jung, K.H., and Lee, S. (2005a). Reverse genetic approaches for functional genomics of rice. Plant Mol. Biol. 59, 111–123.

    Article  PubMed  CAS  Google Scholar 

  • An, G., Lee, S., Kim, S.H., and Kim, S.R. (2005b). Molecular genetics using T-DNA in rice. Plant Cell Physiol. 46, 14–22.

    Article  PubMed  CAS  Google Scholar 

  • Austin, M.J., Muskett, P., Kahn, K., Feys, B.J., Jones, J.D., and Parker, J.E. (2002). Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 295, 2077–2080.

    Article  PubMed  CAS  Google Scholar 

  • Azevedo, C., Sadanandom, A., Kitagawa, K., Freialdenhoven, A., Shirasu, K., and Schulze-Lefert, P. (2002). The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295, 2073–2076.

    Article  PubMed  CAS  Google Scholar 

  • Bhattarai, K.K., Li, Q., Liu, Y., Dinesh-Kumar, S.P., and Kaloshian, I. (2007). The Mi-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiol. 144, 312–323.

    Article  PubMed  CAS  Google Scholar 

  • Bieri, S., Mauch, S., Shen, Q.H., Peart, J., Devoto, A., Casais, C., Ceron, F., Schulze, S., Steinbiss, H.H., Shirasu, K., et al. (2004). RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell 16, 3480–3495.

    Article  PubMed  CAS  Google Scholar 

  • Bittel, P., and Robatzek, S. (2007). Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr. Opin. Plant Biol. 10, 335–341.

    Article  PubMed  CAS  Google Scholar 

  • Boller, T., and He, S.Y. (2009). Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324, 742–744.

    Article  PubMed  CAS  Google Scholar 

  • Chandra-Shekara, A.C., Navarre, D., Kachroo, A., Kang, H.G., Klessig, D., and Kachroo, P. (2004). Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. Plant J. 40, 647–659.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D.H., and Ronald, P.C. (1999). A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol. Rep. 17, 53–57.

    Article  CAS  Google Scholar 

  • Chen, D.H., Zeigler, R.S., and Ahn, S.W. (1996). Phenotypic characterization of the rice blast resistance gene Pi-2(t). Plant Disease 80, 52–56.

    Article  Google Scholar 

  • Chen, X., Shang, J., Chen, D., Lei, C., Zou, Y., Zhai, W., Liu, G., Xu, J., Ling, Z., Cao, G., et al. (2006). A B-lectin receptor kinase gene conferring rice blast resistance. Plant J. 46, 794–804.

    Article  PubMed  CAS  Google Scholar 

  • Cho, J.I., Ryoo, N., Ko, S., Lee, S.K., Lee, J., Jung, K.H., Lee, Y.H., Bhoo, S.H., Winderickx, J., An, G., et al. (2006). Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta 224, 598–611.

    Article  PubMed  CAS  Google Scholar 

  • Dardick, C., and Ronald, P.C. (2006). Plant and animal pathogen recognition receptors signal through non-RD kinases. PLoS Pathog. 2, e2.

    Article  PubMed  Google Scholar 

  • de la Fuente van Bentem, S., Vossen, J.H., de Vries, K.J., van Wees, S., Tameling, W.I., Dekker, H.L., de Koster, C.G., Haring, M.A., Takken, F.L., and Cornelissen, B.J. (2005). Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein. Plant J. 43, 284–298.

    Article  PubMed  Google Scholar 

  • Eom, J.S., Cho, J.I., Reinders, A., Lee, S.W., Yoo, Y., Tuan, P.Q., Choi, S.B., Bang, G., Park, Y.I., Cho, M.H., et al. (2011). Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiol. 157, 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Holt, B.F.III, Belkhadir, Y., and Dangl, J.L. (2005). Antagonistic control of disease resistance protein stability in the plant immune system. Science 309, 929–932.

    Article  PubMed  CAS  Google Scholar 

  • Hubert, D.A., Tornero, P., Belkhadir, Y., Krishna, P., Takahashi, A., Shirasu, K., and Dangl, J.L. (2003). Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J. 22, 5679–5689.

    Article  PubMed  CAS  Google Scholar 

  • Jain, M., Nijhawan, A., Tyagi, A.K., and Khurana, J.P. (2006). Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 345, 646–651.

    Article  PubMed  CAS  Google Scholar 

  • Jarosch, B., Collins, N.C., Zellerhoff, N., and Schaffrath, U. (2005). RAR1, ROR1, and the actin cytoskeleton contribute to basal resistance to Magnaporthe grisea in barley. Mol. Plant Microbe Interact. 18, 397–404.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, D.H., An, S., Park, S., Kang, H.G., Park, G.G., Kim, S.R., Sim, J., Kim, Y.O., Kim, M.K., Kim, S.R., et al. (2006). Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J. 45, 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323–329.

    Article  PubMed  CAS  Google Scholar 

  • Kadota, Y., Shirasu, K., and Guerois, R. (2010). NLR sensors meet at the SGT1-HSP90 crossroad. Trends Biochem. Sci. 35, 199–207.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.W., Han, S.W., Bartley, L.E., and Ronald, P.C. (2006). Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proc. Natl. Acad. Sci. USA 103, 18395–18400.

    Google Scholar 

  • Lee, S.W., Han, S.W., Sririyanum, M., Park, C.J., Seo, Y.S., and Ronald, P.C. (2009a). A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326, 850–853.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.K., Song, M.Y., Seo, Y.S., Kim, H.K., Ko, S., Cao, P.J., Suh, J.P., Yi, G., Roh, J.H., Lee, S., et al. (2009b). Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics 181, 1627–1638.

    Article  PubMed  CAS  Google Scholar 

  • Leister, R.T., Dahlbeck, D., Day, B., Li, Y., Chesnokova, O., and Staskawicz, B.J. (2005). Molecular genetic evidence for the role of SGT1 in the intramolecular complementation of Bs2 protein activity in Nicotiana benthamiana. Plant Cell 17, 1268–1278.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Burch-Smith, T., Schiff, M., Feng, S., and Dinesh-Kumar, S.P. (2004). Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J. Biol. Chem. 279, 2101–2108.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Wang, X., Mitchell, T., Hu, Y., Liu, X., Dai, L., and Wang, G.L. (2010). Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction. Mol. Plant Pathol. 11, 419–427.

    Article  PubMed  CAS  Google Scholar 

  • Lu, R., Malcuit, I., Moffett, P., Ruiz, M.T., Peart, J., Wu, A.J., Rathjen, J.P., Bendahmane, A., Day, L., and Baulcombe, D.C. (2003). High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 22, 5690–5699.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G.B., Bogdanove, A.J., and Sessa, G. (2003). Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant Biol. 54, 23–61.

    Article  PubMed  CAS  Google Scholar 

  • Muskett, P.R., Kahn, K., Austin, M.J., Moisan, L.J., Sadanandom, A., Shirasu, K., Jones, J.D., and Parker, J.E. (2002). Arabidopsis RAR1 exerts rate-limiting control of R gene-mediated defenses against multiple pathogens. Plant Cell 14, 979–992.

    Article  PubMed  CAS  Google Scholar 

  • Noda, T., Nagao, H., Pham, V.D., P.V., Dinh, H.D., and Lai, V.E. (1999). Distribution of pathogenic races of rice blast fungus in Vietnam. Annu. Pytopathol. Soc. Jpn. 65, 526–530.

    Article  Google Scholar 

  • Okuyama, Y., Kanzaki, H., Abe, A., Yoshida, K., Tamiru, M., Saitoh, H., Fujibe, T., Matsumura, H., Shenton, M., Galam, D.C., et al. (2011). A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBLRR protein genes. Plant J. 66, 467–479.

    Article  PubMed  CAS  Google Scholar 

  • Ou, S.H. (1985). Fungus diseases — foliage diseases. In Rice Diseases, (Kew, England: Commonwealth Mycological Institute), pp. 109–201.

    Google Scholar 

  • Peart, J.R., Lu, R., Sadanandom, A., Malcuit, I., Moffett, P., Brice, D.C., Schauser, L., Jaggard, D.A., Xiao, S., Coleman, M.J., et al. (2002). Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc. Natl. Acad. Sci. USA 99, 10865–10869.

    Article  PubMed  CAS  Google Scholar 

  • Qi, M., and Yang, Y. (2002). Quantification of Magnaporthe grisea during infection of rice plants using real-time polymerase chain reaction and northern blot/phosphoimaging analyses. Phytopathology 92, 870–876.

    Article  PubMed  CAS  Google Scholar 

  • Scofield, S.R., Huang, L., Brandt, A.S., and Gill, B.S. (2005). Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol. 138, 2165–2173.

    Article  PubMed  CAS  Google Scholar 

  • Seo, Y.S., Lee, S.K., Song, M.Y., Suh, J.P., Hahn, T.R., Ronald, P.C., and Jeon, J.S. (2008). The HSP90.SGT1-RAR1 molecular chaperone complex: a core modulator in plant immunity. J. Plant Biol. 51, 1–10.

    Article  CAS  Google Scholar 

  • Seo, Y.S., Chern, M., Bartley, L.E., Han, M., Jung, K.H., Lee, I., Walia, H., Xu, X., Cao, P., Bai, W., et al. (2011). Towards establishment of a rice stress response interactome. PLoS Genet. 7, e1002020.

    Article  PubMed  CAS  Google Scholar 

  • Shirasu, K. (2009). The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu. Rev. Plant Biol. 60, 139–164.

    Article  PubMed  CAS  Google Scholar 

  • Shirasu, K., and Schulze-Lefert, P. (2003). Complex formation, promiscuity and multi-functionality: protein interactions in diseaseresistance pathways. Trends Plant Sci. 8, 252–258.

    Article  PubMed  CAS  Google Scholar 

  • Shirasu, K., Lahaye, T., Tan, M.W., Zhou, F., Azevedo, C., and Schulze-Lefert, P. (1999). A novel class of eukaryotic zincbinding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99, 355–366.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, A., Kawasaki, T., Henmi, K., Shil, K., Kodama, O., Satoh, H., and Shimamoto, K. (1999). Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J. 17, 535–545.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, A., Casais, C., Ichimura, K., and Shirasu, K. (2003). HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc. Natl. Acad. Sci. USA 100, 11777–11782.

    Article  PubMed  CAS  Google Scholar 

  • Thomma, B.P., Nurnberger, T., and Joosten, M.H. (2011). Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23, 4–15.

    Article  PubMed  CAS  Google Scholar 

  • Tornero, P., Merritt, P., Sadanandom, A., Shirasu, K., Innes, R.W., and Dangl, J.L. (2002). RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed. Plant Cell 14, 1005–1015.

    Article  PubMed  CAS  Google Scholar 

  • Tsunematsu, H., Yanoria, M.J.T., Ebron, L.A., Hayashi, N., Ando, I. Kato, H., Imbe, T., and Khush, G.S. (2000). Development of monogenic lines of rice for blast resistance. Breed. Sci. 50, 229–234.

    Article  Google Scholar 

  • Wang, Z.X., Yano, M., Yamanouchi, U., Iwamoto, M., Monna, L., Hayasaka, H., Katayose, Y., and Sasaki, T. (1999). The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J. 19, 55–64.

    Article  PubMed  Google Scholar 

  • Wang, Y., Gao, M., Li, Q., Wang, L., Wang, J., Jeon, J.S., Qu, N., Zhang, Y., and He, Z. (2008). OsRAR1 and OsSGT1 physically interact and function in rice basal disease resistance. Mol. Plant Microbe Interact. 21, 294–303.

    Article  PubMed  CAS  Google Scholar 

  • Yi, G., Lee, S.K., Hong, Y.K., Cho, Y.C., Nam, M.H., Kim, S.C., Han, S.S., Wang, G.L., Hahn, T.R., Ronald, P.C., et al. (2004). Use of Pi5(t) markers in marker-assisted selection to screen for cultivars with resistance to Magnaporthe grisea. Theor. Appl. Genet. 109, 978–985.

    Article  PubMed  CAS  Google Scholar 

  • Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764–767.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Seong Jeon.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Song, MY., Kim, CY., Han, M. et al. Differential requirement of Oryza sativa RAR1 in immune receptor-mediated resistance of rice to Magnaporthe oryzae . Mol Cells 35, 327–334 (2013). https://doi.org/10.1007/s10059-013-2317-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-2317-6

Keywords

Navigation