Skip to main content
Log in

Object tracking based on two-dimensional PCA

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, we present a novel object tracking method based on two-dimensional PCA. The low quality of images and the changes of the object appearance are very challenging for the object tracking. The representation of the training features is usually used to solve these challenges. Two-dimensional PCA (2DPCA) based on the image covariance matrix is constructed directly using the original image matrices. An appearance model is presented and its likelihood estimation has been established based on 2DPCA representation in this paper. Compared with the state-of-the-art methods, our method has higher reliability and real-time property. The performances of the proposed tracking method are quantitatively and qualitatively shown in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Haritaoglu, I., Harwood, D., Davis, L.: W4: Real-time surveillance of people and their activities. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 809–830 (2000)

    Article  Google Scholar 

  2. Collins, R. T., Lipton, A. J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P., Wixson, L.: A system for video surveillance and monitoring. Technical report, VSAM final report, Carnegie Mellon University. Technical Report CMU-RI-TR-00-12 (2000)

  3. Javed, O., Shafique, K., Rasheed, Z., Shah, M.: Modeling inter-camera space–time and appearance relationships for tracking across non-overlapping views. Comput. Vis. Image Underst. 109(2), 146–162 (2008)

    Article  Google Scholar 

  4. Li, X., Hu, W., Shen, C., et al.: A survey of appearance models in visual object tracking[J]. ACM Trans. Intell. Syst. Technol. (TIST) 4(4), 58 (2013)

    Google Scholar 

  5. McKenna, S., Raja, Y., Gong, S.: Tracking colour objects using adaptive mixture models. Image Vis. Comput. 17, 223–229 (1999)

    Article  Google Scholar 

  6. Wang, H., Suter, D., Schindler, K., Shen, C.: Adaptive object tracking based on an effective appearance filter. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1661–1667 (2007)

    Article  Google Scholar 

  7. Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust online appearance models for visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1296–1311 (2003)

    Article  Google Scholar 

  8. Wang, Q., Chen, F., Xu, W., Yang, M.: Object tracking via partial least squares analysis. IEEE Trans. Image Process. 21(10), 4454–4465 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  9. Hu, W., Li, X., Luo, W., Zhang, X., Maybank, S., Zhang, Z.: Single and multiple object tracking using log-euclidean riemannian subspace and block-division appearance model[J]. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2420–2440 (2012)

    Article  Google Scholar 

  10. Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In European Conference on Computer Vision. pp. 234–247 (2008)

  11. Visentini I., Snidaro, L., Foresti, G.L.: Dynamic ensemble for target tracking. International Workshop on Visual Surveillance (2008)

  12. Yao, R., Shi, Q., Shen, C., Zhang, Y., Van Den Hengel, A.: Robust tracking with weighted online structured learning. European Conference on Computer Vision (2012)

  13. Yang, J., Zhang, D., Frangi, A.F., et al.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition[J]. Pattern Anal. Mach. Intell. IEEE Trans. 26(1), 131–137 (2004)

    Article  Google Scholar 

  14. Black, M.J., Jepson, A.D.: Eigentracking: Robust matching and tracking of articulated objects using view-based representation. European Conference on Computer Vision, pp. 329–342 (1996)

  15. Ho, J., Lee, K., Yang, M., Kriegman, D.: Visual tracking using learned linear subspaces. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 782–789 (2004)

  16. Li, Y., Xu, L., Morphett, J., Jacobs, R.: On incremental and robust subspace learning. Pattern Recogn. 37(7), 1509–1518 (2004)

    Article  Google Scholar 

  17. Skocaj, D. Leonardis, A.: Weighted and robust incremental method for subspace learning. In IEEE International Conference on Computer Vision, pp. 1494–1501 (2003)

  18. Levy, A., Lindenbaum, M.: Sequential Karhunen-Loeve basis extraction and its application to images[J]. IEEE Trans. Image Process. 9(8), 1371–1374 (2000)

    Article  ADS  MATH  Google Scholar 

  19. Zhang, C., Liu, R., Qiu, T., et al.: Robust visual tracking via incremental low-rank features learning[J]. Neurocomputing 131(7), 237–247 (2014)

    Article  Google Scholar 

  20. Wang, D., Lu, H.: Object Tracking via 2DPCA and l1-Regularization[J]. Signal Process. Lett. IEEE 19, 711–714 (2012)

    Article  ADS  Google Scholar 

  21. Isard M., Blake, A.: Contour tracking by stochastic propagation of conditional density. In: Buxton, B, Cipolla, R. (eds.) LNCS. In: Proceedings of the Fourth European Conference on Computer Vision, vol. 1064, pp. 343–356. Springer, Berlin (1996)

  22. North, B., Blake, A.: Learning dynamical models using expectation-maximization. In Proceedings of IEEE international conference on computer vision, pp. 384–389 (1998)

  23. Ross, D.A., Lim, J., Lin, R.S., et al.: Incremental learning for robust visual tracking[J]. Int. J. Comput. Vision 77(1–3), 125–141 (2008)

    Article  Google Scholar 

  24. Moghaddam, B., Pentland, A.: Probabilistic visual learning for object detection. In Proceedings of IEEE international conference on computer vision, pp. 786–793 (1995)

  25. Tipping, M.E., Bishop, C.M.: Mixtures of probabilistic principal component analyzers. Neural Comput. 11(2), 443–482 (1999)

    Article  Google Scholar 

  26. Mei, X., Ling, H.: Robust visual tracking using l1 minimization. In ICCV (2009)

  27. Kwon, J, Lee, K.: Visual Tracking Decomposition. In CVPR, pp. 1269–1276 (2010)

  28. Wang, T., Gu, I.Y.H., Shi, P.: Object Tracking using Incremental 2D-PCA Learning and ML Estimation. ICASSP 2007, pp. I-933–I-936 (2007)

  29. Wu, Y., Lim, J., Yang, M.H.: Object Tracking Benchmark[J]. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  30. Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance Learning[J]. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)

    Article  Google Scholar 

  31. Henriques, J.F., Rui, C., Martins, P. et al.: Exploiting the Circulant Structure of Tracking-by-Detection with Kernels[M]//Computer Vision—ECCV 2012. Springer, Berlin, pp. 702–715 (2012)

  32. Akgün, M.A., Garcelon, J.H., Haftka, R.T.: Fast exact linear and non-linear structural reanalysis and the Sherman–Morrison–Woodbury formulas[J]. Int. J. Numer. Meth. Eng. 50(7), 1587–1606 (2001). doi:10.1002/nme.87

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyuan Xu.

Appendix

Appendix

According to Eq. (12), the likelihood of \(p\left( {A_{t} } \right)\) can be computed as

$$\begin{aligned} \log \left( {p\left( {A_{t} } \right)} \right) &= - \frac{1}{2}\left\{ {\underbrace {{\log \left( {2\pi } \right){\mathbf{I}} + \log \left| {{\mathbf{X}}_{t} L{\mathbf{X}}_{t}^{T} + \sigma^{2} {\mathbf{I}}} \right|}}_{C}} \right. \\& \quad \left. { + \underbrace {{\left( {A_{t} - u{\mathbf{X}}_{t}^{T} } \right)^{T} \left( {A_{t} - u{\mathbf{X}}_{t}^{T} } \right)\left( {{\mathbf{X}}_{t} L{\mathbf{X}}_{t}^{T} + \sigma^{2} {\mathbf{I}}} \right)^{ - 1} }}_{L}} \right\} \\ \end{aligned}$$
(21)

The polynomial \(C\) is a constant, so \(\log p\left( {A_{t} } \right)\) is determined by the polynomial \(L\). We can redefine the Eq. (21) as:

$$\log \left( {p\left( {A_{t} } \right)} \right) \propto \left( {A_{t} - u{\mathbf{X}}_{t}^{T} } \right)^{T} \left( {A_{t} - u{\mathbf{X}}_{t}^{T} } \right)\left( {{\mathbf{X}}_{t} L{\mathbf{X}}_{t}^{T} + \sigma^{2} {\mathbf{I}}} \right)^{ - 1}$$
(22)

Sherman–Morrison–Woodbury formula [32] is written as:

$$\left( {{\mathbf{A - uv}}^{T} } \right)^{ - 1} = {\mathbf{A}}^{ - 1} + {\mathbf{A}}^{ - 1} {\mathbf{u}}\left( {1 - {\mathbf{v}}^{T} {\mathbf{A}}^{ - 1} {\mathbf{u}}} \right)^{ - 1} {\mathbf{v}}^{T} {\mathbf{A}}^{ - 1}$$
(23)

According to Eq. (23), we can derive

(24)

and since

$$\left( {L^{ - 1} + \frac{1}{{\sigma^{2} }}{\mathbf{I}}} \right)^{ - 1} = \sigma^{2} \left( {{\mathbf{I}} - D^{ - 1} \sigma^{2} } \right)$$
(25)

where \(D\) is a diagonal matrix with \(D_{ii} = L_{ii} + \sigma^{2}\), we can get

$$\begin{aligned} &\left( {{\mathbf{X}}_{t} L{\mathbf{X}}_{t}^{T} + \sigma^{2} {\mathbf{I}}} \right)^{ - 1} \hfill \\ &= \frac{1}{{\sigma^{2} }}{\mathbf{I}} - \frac{1}{{\sigma^{2} }}{\mathbf{X}}_{t} \sigma^{2} \left( {{\mathbf{I}} - D^{ - 1} \sigma^{2} } \right){\mathbf{X}}_{t}^{T} \frac{1}{{\sigma^{2} }} \hfill \\ &= \frac{1}{{\sigma^{2} }}{\mathbf{I}} - \frac{1}{{\sigma^{2} }}\left( {{\mathbf{X}}_{t} {\mathbf{X}}_{t}^{T} } \right) + \left( {{\mathbf{X}}_{t} D^{ - 1} {\mathbf{X}}_{t}^{T} } \right) \hfill \\ &= \frac{1}{{\sigma^{2} }}\left( {{\mathbf{I}} - {\mathbf{X}}_{t} {\mathbf{X}}_{t}^{T} } \right) + \left( {{\mathbf{X}}_{t} D^{ - 1} {\mathbf{X}}_{t}^{T} } \right) \hfill \\ \end{aligned}$$
(26)

Put Eq. (26) into Eq. (21), we can derive

$$\begin{aligned} \log \left( {p\left( {A_{t} } \right)} \right) &= - \frac{1}{2}\left\{ {\underbrace {{\log \left( {2\pi } \right){\mathbf{I}} + \log \left| {{\mathbf{X}}_{t} L{\mathbf{X}}_{t}^{T} + \sigma^{2} {\mathbf{I}}} \right|}}_{C}} \right. \\& \quad \left. { + \underbrace {{\left( {A_{t} - u{\mathbf{X}}_{t}^{T} } \right)^{T} \left( {A_{t} - u{\mathbf{X}}_{t}^{T} } \right)\left( {\frac{1}{{\sigma^{2} }}\left( {{\mathbf{I}} - {\mathbf{X}}_{t} {\mathbf{X}}^{T} } \right) + \left( {{\mathbf{X}}_{t} D^{ - 1} {\mathbf{X}}_{t}^{T} } \right)} \right)}}_{{L_{1} }}} \right\} \\ \end{aligned}$$
(27)

Similarly to Eq. (21), The polynomial \(C\) is a constant and \(\log p\left( {A_{t} } \right)\) is determined by the polynomial \(L_{1}\). We can redefine the Eq. (22) as:

$$\log \left( {p\left( {A_{t} } \right)} \right) \propto \left( {A_{t} - u{\mathbf{X}}_{t}^{T} } \right)^{T} \left( {A_{t} - u{\mathbf{X}}_{t}^{T} } \right)\left( {\frac{1}{{\sigma^{2} }}\left( {{\mathbf{I}} - {\mathbf{X}}_{t} {\mathbf{X}}_{t}^{T} } \right) + \left( {{\mathbf{X}}_{t} D^{ - 1} {\mathbf{X}}_{t}^{T} } \right)} \right)$$
(28)

According to the Eigen representation, the probability of the observed sub-image for each particle can be expressed as

$$\begin{aligned} p\left( {A_{t} |{\mathbf{Z}}_{t} } \right) &= \exp \left( { - \frac{1}{{\sigma^{2} }}\left\| {\left( {A_{t} - u{\mathbf{X}}_{t(L)}^{T} } \right) - \left( {A_{t} - u{\mathbf{X}}_{t(L)}^{T} } \right){\mathbf{X}}_{t(L)} {\mathbf{X}}_{t(L)}^{T} } \right\|^{2} } \right. \\ & \quad \left. { - \left\| {\left( {A_{t} - u{\mathbf{X}}_{t(L)}^{T} } \right){\mathbf{X}}_{t(L)} \sum_{(L)}^{ - 1/2} } \right\|^{2} } \right) \\ \end{aligned}$$
(29)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Gu, G., Kong, X. et al. Object tracking based on two-dimensional PCA. Opt Rev 23, 231–243 (2016). https://doi.org/10.1007/s10043-015-0178-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0178-2

Keywords

Navigation