Skip to main content
Log in

Using a geological perspective to improve understanding of bedrock aquifers

Adopter une approche géologique pour améliorer la compréhension des aquifères de socle

Una perspectiva geológica para comprender mejor los acuíferos de basamento

利用地质学的视角促进基岩含水层的认识

Usando uma perspectiva geológica para melhorar a compreensão dos aquíferos rochosos

  • Essay
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The example of flow near the water table in bedrock aquifers was used to compare a data-based geological perspective and a theory-based hydraulic perspective for characterizing aquifers. The geological perspective showed that there are systematic vertical variations in permeability due to chemical weathering and compression, and gave more accurate but less precise answers than the hydraulic approach. Consequently, the geological perspective can provide a useful complementary approach to the prevailing hydraulic perspective for characterizing aquifers.

Résumé

L’exemple de l’écoulement près de la nappe phréatique dans les aquifères de socle a été utilisé pour comparer une approche géologique basée sur des données et une approche hydraulique basée sur la théorie pour caractériser les aquifères. L’approche géologique a montré qu’il existe des variations verticales systématiques de la perméabilité dues à l’altération chimique et à la compression, et a donné des réponses plus exactes mais moins précises que l’approche hydraulique. Par conséquent, l’approche géologique peut constituer une approche complémentaire utile à l’approche hydraulique dominante pour la caractérisation des aquifères.

Resumen

Se utilizó el ejemplo del flujo cercano al nivel freático en acuíferos de basamento para comparar una perspectiva geológica basada en los datos y una hidráulica basada en la teoría para caracterizar los acuíferos. En este caso, la perspectiva geológica demostró que existen variaciones verticales sistemáticas de la permeabilidad debidas a la meteorización química y a la compresión, y dio respuestas más exactas, pero menos precisas que el enfoque hidráulico. Por consiguiente, la perspectiva geológica puede proporcionar un enfoque complementario útil a la hidráulica predominante para caracterizar los acuíferos.

摘要

基岩含水层潜水位附近流动的案例被用来比较基于数据的地质学视角和基于理论的水力学视角的含水层表征。地质学视角发现化学风化和压缩导致渗透性系统性地垂向变化,给出了比水力学方法更准确但不太精确的答案。因此,地质学视角可以作为对主流水力学视角进行含水层表征的有益补充。

Resumo

O exemplo de fluxo perto do lençol freático em aquíferos rochosos foi usado para comparar uma perspectiva geológica baseada em dados e uma perspectiva hidráulica baseada em teoria para caracterizar aquíferos. A perspectiva geológica mostrou que existem variações verticais sistemáticas na permeabilidade devido ao intemperismo químico e à compressão, e deu respostas mais precisas, mas menos precisas do que a abordagem hidráulica. Consequentemente, a perspectiva geológica pode fornecer uma abordagem complementar útil à perspectiva hidráulica predominante para a caracterização de aquíferos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achtziger-Zupančič P, Loew S, Mariéthoz G (2017) A new global database to improve prediction of permeability distribution in crystalline rocks at site scale. J Geophys Res: Solid Earth 122:3513–3539

    Article  Google Scholar 

  • Anderson MP (2008) Groundwater. Benchmark papers in hydrology, no. 3. Int. Assoc. Hydrol. Sci., Wallingford, England

  • Anderson MP, Woessner WW, Hunt RJ (2015) Applied groundwater modeling. Elsevier, Amsterdam

    Google Scholar 

  • Baker VR (2017) Debates: hypothesis testing in hydrology—pursuing certainty versus pursuing uberty. Water Resour Res 53(3):1770–1778

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. American Elsevier, New York

    Google Scholar 

  • Berner EK, Berner RA (2012) Global environment. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Bredehoeft JD (2005) The conceptualization model problem—surprise. Hydrogeol J 13:37–46

    Article  Google Scholar 

  • Cardenas MB, Jiang XW (2010) Groundwater flow, transport, and residence times through topography-driven basins with exponentially decreasing permeability and porosity. Water Resour Res 46(11)

  • Connorton BJ, Reed RN (1978) A numerical model for the prediction of long term well yield in an unconfined chalk aquifer. Q J Eng Geol Hydrogeol 11:127–138

    Article  Google Scholar 

  • Davis SN, Turk LJ (1964) Optimum depth of wells in crystalline rocks. Groundwater 2(2):6–11

    Article  Google Scholar 

  • Deming D (2002) Introduction to hydrogeology. McGraw Hill, Boston

    Google Scholar 

  • De Marsily G, Delay F, Gonçalvès J, Renard P, Teles V, Violette S (2005) Dealing with spatial heterogeneity. Hydrogeol J 13(1):161–183

    Article  Google Scholar 

  • Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology. Wiley, New York

    Google Scholar 

  • Dreybrodt W (1990) The role of dissolution kinetics in the development of karst aquifers in limestone: a model simulation of karst evolution. J Geol 98(5):639–655

    Article  Google Scholar 

  • Fetter CW, Kreamer D (2022) Applied hydrogeology. Waveland, Long Grove, IL

    Google Scholar 

  • Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, England

    Book  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Frodeman R (1995) Geological reasoning: geology as an interpretive and historical science. Geol Soc Am Bull 107(8):960–968

    Article  Google Scholar 

  • Gleeson T, Smith L, Moosdorf N, Hartman J, Dürr HH, Manning AH, van Beek PH, Jellinek AM (2011) Mapping permeability over the surface of the Earth. Geophys Res Lett 38(2):GL045565

    Article  Google Scholar 

  • Headworth HG, Keating T, Packman MJ (1982) Evidence for a shallow highly-permeable zone in the Chalk of Hampshire, UK. J Hydrol 55:93–112

    Article  Google Scholar 

  • Hubbert MK (1940) The theory of ground-water motion. J Geol 48(8):785–944

    Article  Google Scholar 

  • Hubbert MK (1974) Is being quantitative sufficient? In: Merriam DF (ed) The impact of quantification on geology. Geol. Contrib. no. 2. Syracuse Univ, Syracuse, New York, pp 27–49

    Google Scholar 

  • Ingebritsen SE, Sanford WE, Neuzil C (2006) Groundwater in geologic processes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jackson TR, Fenelon JM (2022) Relation of hydraulic conductivity to depth, alteration, and rock type in the volcanic rocks of Pahute Mesa, Nevada, USA. Hydrogeol J 30(8):2417–2432

    Article  Google Scholar 

  • Jones MJ (1985) The weathered zone aquifers of the basement complex areas of Africa. Q J Eng Geol Hydrogeol 18:35–46

    Article  Google Scholar 

  • Kleinhans MG, Buskes CJ, de Regt HW (2010) Philosophy of earth science. In: Alhoff F (ed) Philosophies of the sciences: a guide. Blackwell, New York, pp 213–236

    Chapter  Google Scholar 

  • Klemeš V (1988) A hydrological perspective. J Hydrol 100:3–28

    Article  Google Scholar 

  • Kuhn TS (1962) The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  • Lachassagne P, Wyns R, Dewandel B (2011) The fracture permeability of hard rock aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova 23(3):145–161

    Article  Google Scholar 

  • Małoszewski P, Zuber A (1985) On the theory of tracer experiments in fissured rocks with a porous matrix. J Hydrol 79(3–4):333–358

    Article  Google Scholar 

  • Medici G, West LJ, Mountney NP (2018) Characterization of a fluvial aquifer at a range of depths and scales: the Triassic St Bees Sandstone Formation, Cumbria, UK. Hydrogeol J 26(2):565–591

    Article  Google Scholar 

  • Meinzer OE (1923) The occurrence of ground water in the United States. US Geol Surv Water Suppl Pap 489

  • Meinzer OE, Wenzel LK (1940) Ground Water. In: Meinzer OE (ed) Hydrology. Dover, New York, pp 385–477

    Google Scholar 

  • Owen M, Robinson VK (1978) Characteristics and yield in fissured Chalk. In: Thames groundwater scheme. Institution of Civil Engineers, London, pp 33–49

    Chapter  Google Scholar 

  • Price M, Downing RA, Edmunds WM (1993) The Chalk as an aquifer. In: Downing RA, Price M, Jones GP (eds) The hydrogeology of the Chalk of North-West Europe. Clarendon, Oxford, pp 33–58

    Google Scholar 

  • Ranjram M, Gleeson T, Luijendijk E (2015) Is the permeability of crystalline rock in the shallow crust related to depth, lithology or tectonic setting? Geofluids 15:106–119

    Article  Google Scholar 

  • Saar MO, Manga M (2004) Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints. J Geophys Res: Solid Earth 109(B4). https://doi.org/10.1029/2003JB002855

  • Sanford WE (2017) Estimating regional-scale permeability–depth relations in a fractured-rock terrain using groundwater-flow model calibration. Hydrogeol J 25(2):405–419

    Article  Google Scholar 

  • Schwartz FW (2015) Frog in a well. Grundwasser 20(4):241–242

    Article  Google Scholar 

  • Schwartz FW, Ibaraki M (2001) Hydrogeological research: beginning of the end or end of the beginning? Ground Water 39(4):492–498

    Article  Google Scholar 

  • Soley RWN, Power T, Mortimore RN, Shaw P, Dottridge J, Bryan G, Colley I (2012) Modelling the hydrogeology and managed aquifer system of the Chalk across southern England. Geol Soc Lond Spec Publ 234:129–154

    Article  Google Scholar 

  • Stober I, Bucher K (2007) Hydraulic properties of the crystalline basement. Hydrogeol J 15(2):213–224

    Article  Google Scholar 

  • Swanson SK, Bahr JM, Bradbury KR, Anderson KM (2006) Evidence for preferential flow through sandstone aquifers in southern Wisconsin. Sed Geol 184(3–4):331–342

    Article  Google Scholar 

  • Swinnerton AC (1932) Origin of limestone caverns. Bull Geol Soc Am 43:663–694

    Article  Google Scholar 

  • Theis CV (1936) Ground water in south-central Tennessee. US Geol Surv Water Suppl Pap 677

  • Worthington SRH (2009) Diagnostic hydrogeologic characteristics of a karst aquifer (Kentucky, USA). Hydrogeol J 17(7):1665–1678

    Article  Google Scholar 

  • Worthington SRH (2022) Estimating effective porosity in bedrock aquifers. Groundwater 60(2):169–179

    Article  Google Scholar 

  • Worthington SRH (2023) Examining the assumptions of the single-porosity archetype for transport in bedrock aquifers. Hydrogeol J 31(1):87–96

    Article  Google Scholar 

  • Worthington SRH, Foley AE (2023) Development of spatial permeability variations in English chalk aquifers. Geol Soc Lond Spec Publ 517. https://doi.org/10.1144/SP517-2020-93

Download references

Acknowledgements

Thanks go to John Molson, Stephanie N. Wright, and an anonymous reviewer for their useful review comments. The author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. H. Worthington.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 730 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Worthington, S.R.H. Using a geological perspective to improve understanding of bedrock aquifers. Hydrogeol J 31, 1695–1700 (2023). https://doi.org/10.1007/s10040-023-02678-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02678-7

Keywords

Navigation