Skip to main content

Advertisement

Log in

Dealing with spatial heterogeneity

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Heterogeneity can be dealt with by defining homogeneous equivalent properties, known as averaging, or by trying to describe the spatial variability of the rock properties from geologic observations and local measurements. The techniques available for these descriptions are mostly continuous Geostatistical models, or discontinuous facies models such as the Boolean, Indicator or Gaussian-Threshold models and the Markov chain model. These facies models are better suited to treating issues of rock strata connectivity, e.g. buried high permeability channels or low permeability barriers, which greatly affect flow and, above all, transport in aquifers. Genetic models provide new ways to incorporate more geology into the facies description, an approach that has been well developed in the oil industry, but not enough in hydrogeology. The conclusion is that future work should be focused on improving the facies models, comparing them, and designing new in situ testing procedures (including geophysics) that would help identify the facies geometry and properties. A world-wide catalog of aquifer facies geometry and properties, which could combine site genesis and description with methods used to assess the system, would be of great value for practical applications.

Résumé

On peut aborder le problème de l’hétérogénéité en s’efforçant de définir une perméabilité équivalente homogène, par prise de moyenne, ou au contraire en décrivant la variation dans l’espace des propriétés des roches à partir des observations géologiques et des mesures locales. Les techniques disponibles pour une telle description sont soit continues, comme l’approche Géostatistique, soit discontinues, comme les modèles de faciès, Booléens, ou bien par Indicatrices ou Gaussiennes Seuillées, ou enfin Markoviens. Ces modèles de faciès sont mieux capables de prendre en compte la connectivité des strates géologiques, telles que les chenaux enfouis à forte perméabilité, ou au contraire les faciès fins de barrières de perméabilité, qui ont une influence importante sur les écoulement, et, plus encore, sur le transport. Les modèles génétiques récemment apparus ont la capacité de mieux incorporer dans les modèles de faciès les observations géologiques, chose courante dans l’industrie pétrolière, mais insuffisamment développée en hydrogéologie. On conclut que les travaux de recherche ultérieurs devraient s’attacher à développer les modèles de faciès, à les comparer entre eux, et à mettre au point de nouvelles méthodes d’essais in situ, comprenant les méthodes géophysiques, capables de reconnaître la géométrie et les propriétés des faciès. La constitution d’un catalogue mondial de la géométrie et des propriétés des faciès aquifères, ainsi que des méthodes de reconnaissance utilisées pour arriver à la détermination de ces systèmes, serait d’une grande importance pratique pour les applications.

Resumen

La heterogeneidad se puede manejar por medio de la definición de características homogéneas equivalentes, conocidas como promediar o tratando de describir la variabilidad espacial de las características de las rocas a partir de observaciones geológicas y medidas locales. Las técnicas disponibles para estas descripciones son generalmente modelos geoestadísticos continuos o modelos de facies discontinuos como los modelos Boolean, de Indicador o de umbral de Gaussian y el modelo de cadena de Markow. Estos modelos de facies son mas adecuados para tratar la conectvidad de estratos geológicos (por ejemplo canales de alta permeabilidad enterrados o barreras de baja permeabilidad que tienen efectos importantes sobre el flujo y especialmente sobre el transporte en los acuíferos. Los modelos genéticos ofrecen nuevas formas de incorporar más geología en las descripciones de facies, un enfoque que está bien desarollado en la industria petrolera, pero insuficientemente en la hidrogeología. Se concluye que los trabajos futuros deberían estar más enfocados en mejorar los modelos de facies, en establecer comparaciones y en diseñar nuevos procedimientos para pruebas in-situ (incuyendo la geofísica) que pueden ayudar a identificar la geometría de las facies y sus propiedades. Un catálogo global de la geometría de las facies de los acuíferos y sus características, que podría combinar la génesis de los sitios y descripciones de los métodos utilizados para evaluar el sistema, sería de gran valor para las aplicaciones prácticas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aboufirassi M, Marino MA (1984) Cokriging of aquifer transmissivities from field measurements of transmissivity and specific capacity. J Int Assoc Math Geol 16(1):19–35

    Google Scholar 

  • Abramovich B, Indelman P (1995) Effective permeability of log-normal isotropic random media. J Phys A – Math Gen 28:693–700

    Google Scholar 

  • Acuna JA, Yortsos YC (1995) Application of fractal geometry to the study of networks of fractures and their pressure transient. Water Resour Res 31(3):527–540

    Google Scholar 

  • Ahmed S, de Marsily G (1987) Comparison of geostatistical methods for estimating transmissivity using data on transmisivity and specific capacity. Water Resour Res 23(9):1717–1737

    Google Scholar 

  • Ahmed S, de Marsily G (1988) Combined use of hydraulic and electrical properties of an aquifer in a geostatistical estimation of transmissivity. Ground Water 26(1):78–86

    Google Scholar 

  • Ahmed S, de Marsily G (1993) Co-kriged estimation of aquifer transmissivity as an indirect solution of inverse problem: a practical approach. Water Resour Res 29(2):521–530

    Google Scholar 

  • Allard D (1994) Simulating a geological lithofacies with respect to connectivity information using the truncated Gaussian model. In: Armstrong M, Dowd P (eds) Geostatistical simulations: proceedings of the geostatistical simulation workshop, Fontainebleau, France 27–28 May 1993. Kluwer, Norwell, MA, pp 197–211

    Google Scholar 

  • Anda K, Kostner A, Neman SP (2003) Stochastic continuum modeling of flow and transport in a crystalline rock mass: Fanay-Augères, France, revisited. Hydrogeol J 11:521–535

    Google Scholar 

  • Andersson JA, (1984) Stochastic model of a fractured rock conditioned by measured information. Water Resour Res 20:79–88

    Google Scholar 

  • Anderson MP (1989) Hydrogeologic facies models to delineate large-scale spatial trends in glacial and glaciofluvial sediments. Geol Soc Am Bull 101(4):501–511

    Google Scholar 

  • Anguy Y, Ehrlich R, Ahmadi A, Quintard M (2001) On the ability of a class of random models to portray the structural features of real, observed, porous media in relation to fluid flow. Cem Concr Compos 23:313–330

    Google Scholar 

  • Anguy Y, Ehrlich R, Mercet C (2003) Is it possible to characterize the geometry of a real porous medium by a direct measurement on a finite section? 1. The phase-retrieval problem. Math Geol 35(7):763–788

    Google Scholar 

  • Armstrong M, Galli A, Le Loc’h G, Geffroy F, Eschard F (2003) Plurigaussian simulations in geosciences. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Aupepin JR, Davy P, Bour O (2001) Hydraulic properties of two-dimensional fracture networks following a power law length distribution. 2: Permeability of networks based on a lognormal distribution of apertures. Water Resour Res 37(8):2079–2095

    Article  Google Scholar 

  • Bai T, Pollard DD (2000) Closely spaced fractures in layered rocks: initiation mechanism and propagation kinematics. J Struct Geol 22:1409–1425

    Google Scholar 

  • Barker JA (1988) A generalized radial flow model for hydraulic tests in fractured rocks. Water Resour Res 24(10):1796–1804

    Google Scholar 

  • Besbes M et al (2003) Système Aquifère du Sahara Septentrional. Gestion commune d’un bassin transfrontière [Aquifer systems of northern Sahara. Common management of a trans-boundary basin]. La Houille Blanche 5:128–133

    Google Scholar 

  • Betheke C (1985) A numerical model of compaction-driven groundwater flow and heat transport and its application to paleohydrology of intracratonic sedimentary basins. J Geophys Res 90(B8):6817–6828

    Google Scholar 

  • Beucher H, Fournier F, Doliguez B, Rozanski J (1999) Using 3D seismic derived information in lithofacies simulations. A case study. Annual technical conference and exhibit of the Society of Petroleum Engineering, Houston, Oct. 3–6, 1999. Proceedings, SPE 56736, pp 581–592

  • Billaux D (1990) Hydrogéologie des milieux fracturés. Géométrie, connectivité, et comportement hydraulique [Hydrogeology of fractured media. Geometry, connectivity, and hydraulic behavior]. Ph.D. dissertation, Ecole des Mines de Paris, Document du BRGM no186, Orléans, France, 310 pp

  • Burrus J (1997) Contribution à l’étude du fonctionnement des systèmes pétroliers: apport d’une modélisation bi-dimensionnelle [Contribution to the study of hydrocarbon systems: role of 2-D modeling]. Doctoral thesis, Paris School of Mines, Fontainebleau, 309 pp

  • Cacas MC, Ledoux E, de Marsily G, Tillie B, Barbreau A, Durand E, Feuga B, Peaudecerf P (1990a) Modelling fracture flow with a discrete fracture network: calibration and validation—1. The flow model. Water Resour Res 26(1):479–489

    CAS  Google Scholar 

  • Cacas MC, Ledoux E, de Marsily G, Barbreau A, Calmels P, Gaillard B, Margritta R (1990b) Modelling fracture flow with a discrete fracture network: calibration and validation—2. The transport model. Water Resour Res 26(1):491–500

    CAS  Google Scholar 

  • Caers J, Strebelle S, Payrazyan K (2003) Stochastic integration of seismic data and geologic scenarios: a West Africa submarin channel saga. The Leading Edge 22(3):192

    Google Scholar 

  • Cardwell WT, Parsons RL (1945) Average permeabilities of heterogeneous oil sands. Trans Am Inst Min Metall Pet Eng 160:34–42

    Google Scholar 

  • Carle SF, Fogg GE (1996) Transition probability-based indicator geostatistics. Math Geol28(4):453–476

    Google Scholar 

  • Carle SF, Fogg GE (1997) Modeling spatial variability with one- and multi-dimensional continuous Markov chains. Math Geol 29(7):891–918

    Google Scholar 

  • Carle SF, LaBolle EM, Weissmann GS, VanBrocklin D, Fogg GE (1998) Conditional simulation of hydrofacies architecture: a transition probability/Markov approach. In: Fraser GS, Davis JM (eds) Hydrogeologic models of sedimentary aquifers, SEPM concepts in Hydrogeol. Environ. Geol, vol. 1. Soc. For Sediment. Geol, Tulsa, OK, pp 147–170

    Google Scholar 

  • Carluer N, de Marsily G (2004) Assessment and modelling of the influence of man-made networks on the hydrology of a small watershed: implications for fats flow components, water quality and landscape management. J Hydrol 285:76–95

    Google Scholar 

  • Carrayrou J, Mose R, Behra P (2004) Operator-splitting for reactive transport and comparison of mass balance errors. J Contam Hydrol 68:239–268

    Google Scholar 

  • Castro MC, Goblet P, Ledoux E, Violette S, de Marsily G (1998) Noble gases as natural tracers of water circulation in the Paris basin. Part 2. Calibration of a groundwater flow model using noble gas isotope data. Water Resour Res 34(10):2467–2483

    Article  Google Scholar 

  • Certes C, de Marsily G (1991) Application of the pilot point method to the identification of aquifer transmissivity. Adv Water Resour 14(5):284–300

    Google Scholar 

  • Chang J, Yortsos YC (1990) Pressure-transient analysis of fractal reservoirs. SPE Formation Evaluation 5(3) Art. Nb. SPE 18710:631-643

    Google Scholar 

  • Chiles JP, de Marsily G (1993) Flow in fractured rocks. In: Bear J, de Marsily G, Tsang CF (eds) Flow and transport in fractured rocks. Accademic, Orlando

    Google Scholar 

  • Chiles JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York, 695 pp

    Google Scholar 

  • Cooley RL (1997) Confidence interval for ground-water models using linearization, likelihood and bootstrap methods. Ground Water 35(5):869–880

    Google Scholar 

  • Dagan G (1985) Stochastic modeling of groundwater flow by unconditional and conditional probabilities: the inverse problem. Water Resour Res 21(1):65–72

    Google Scholar 

  • Dagan G (1989) Theory of flow and transport in porous formations. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Dagan G (2002) An overview of stochastic modeling of groundwater flow and transport: from theory to applications. EOS, Trans Am Geophys Union 83(53):31–12

    Google Scholar 

  • Darcy H (1856) Les fontaines publiques de la Ville de Dijon [The public fountains of the City of Dijon]. Dalmont, Paris

    Google Scholar 

  • Delay F, Porel G, (2003) Inverse modeling in the time domain for solving diffusion in a heterogeneous rock matrix. Geophys Res Lett 30(3):DOI 10.1029/2002GL016428

    Google Scholar 

  • Delhomme JP (1976) Application de la théorie des variables régionalisées dans les sciences de l’eau [Application of the theory of regionalized variables to water sciences]. Doctoral thesis, University Paris VI

  • Delhomme JP (1978) Kriging in hydrosciences. Adv Water Resour 1(5):251–266

    Google Scholar 

  • Delhomme JP (1979) Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach. Water Resour Res 15(2):269–280

    Google Scholar 

  • de Marsily G (1978) De l’identification des systèmes hydrologiques [On the calibration of hydrologic systems]. Doctoral thesis, University Paris VI

  • de Marsily G (1985) Flow and transport in fractured rocks: connectivity and scale effects. Invited paper. International symposium on the hydrogeology of rocks of low permeability, Tucson AZ (USA), January 1985, International Association of Hydrogeologists, Memoires, XX

    Google Scholar 

  • de Marsily G (1986) Quantitative hydrogeology. Groundwater hydrology for engineers. Academic, New York, 440 pp

    Google Scholar 

  • de Marsily G, Combes P, Goblet P (1992) Comments on “Groundwater models cannot be validated”. In: Konikow LF, Bredehoeft JD (eds), Adv Water Res 15:367–369

  • de Marsily G, Schafmeister MT, Delay F, Teles V (1998) On some current methods to represent the heterogeneity of natural media in hydrogeology. Hydrogeol J 6:115–130

    Google Scholar 

  • de Marsily G, Delhomme JP, Coudrain-Ribstein A, Lavenue AM (2000) Four decades of inverse problems in hydrogeology. In: Zhang D, Winter CL (eds) Theory, modeling, and field investigation in hydrogeology. Geological Society of America Special Paper 348, pp 1–17

  • Desbarats AJ (1987) Numerical estimation of effective permeability in sand–shale formations. Water Resour Res 23(2) 273–286

    Google Scholar 

  • Doliguez B, Grandjeon D, Joseph P, Eschard R, Beucher H (1999) How can stratigraphic modeling help constrain geostatistical reservoir simulations? In: Harbaugh JW et al (eds) Numerical experiments in stratigraphy: recent advances in stratigraphic and sedimentologic computer simulations. SEPM Sp. Publ. No. 62, pp 239–244

  • Dupuit J (1857) Mémoire sur les mouvements de l’eau à travers les terrains perméables [Report on the movement of water through permeable terrains]. Compte Rendu Académie des Sciences, Section Mécanique

  • Dupuit J (1863) Etude théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables [Theoretical and practical studies on the movement of water in uncovered canals and permeable terrains]. Dunod, Paris

    Google Scholar 

  • Euzen T, Joseph P, du Fornel E, Lesur S, Grandjeon D, Guillocheau F (2004) Three-dimensional stratigraphic modelling of the Grès d’Annot system, Eocene-Oligocene, SE France. In: Joseph P, Lomas SA (eds) Deep-water sedimentation in the Alpine basin of SE France: new perspectives on the Grès d’Annot and related systems. Geological Society, London, Special Publications 221, pp 161–180

    Google Scholar 

  • Fogg GE (1986) Groundwater flow and sand body interconnectedness in a thick, multiple-aquifer system. Water Resour Res 22(5):679– 694

    Google Scholar 

  • Fogg GE, Noyes CD, Carle SF (1998) Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting. Hydrogeol J 6(1):131–143

    Google Scholar 

  • Fogg GE, Carle SF, Green C (2000) A connected-network paradigm for the alluvial aquifer system. In: Zhang D (ed) Theory, modelling and field investigation in hydrogeology: a special volume in honor of Shlomo P. Neuman’s 60th birthday. GSA, Boulder, CO, GSA Special Paper 348, pp 25–42

    Google Scholar 

  • Fournier F, Desquirez PY, Macrides CG, Rademakers M (2002) Quantitative lithostratigraphic interpretation of seimic data for characterization of the Unayzah formation in central Saudi Arabia. Geophysics 67(5):1372–1381

    Google Scholar 

  • Freeze RA (1975) A stochastic-conceptual analysis of one-dimensional groundwater flow in non-uniform homogeneous media. Water Resour Res 11(5):725–741

    Google Scholar 

  • Garven G (1995) Continental-scale groundwater flow and geologic processes. Annu Rev Earth Planet Sci 24:89–117

    Google Scholar 

  • Ge S, Garven G (1992) Hydromechanical modeling of tectonically driven groundwater flow with application to the Arkoma forland basin. J Geophy Res 97(B6):9119–9144

    Google Scholar 

  • Gelhar LW (1976) Effects of hydraulic conductivity variation on groundwater flow. In: Second international symposium on stochastic hydraulics, International Association for Hydraulic Research, Lund, Sweden

  • Gelhar LW (1993) Stochastic subsurface hydrology. Prentice-Hall, Old Tappan, NJ

    Google Scholar 

  • Glassley WE, Simmons AM, Kercher JR (2002) Mineralogical heterogeneity in fractured, porous media and its representation in reactive transport models. Appl Geochem 17:699–708

    Google Scholar 

  • Gonçalvès J, Violette S, Guillaucheau F, Pagel M, Bruel D, Robin C, de Marsily G, Ledoux E (2004a) Using a 3-D basin model as an interactive tool with diagenesis analysis, example of the Paris basin, France. Basin Res (in press)

  • Gonçalvès J, Violette S, Robin C, Bruel D, Guillocheau F, Ledoux E (2004b) Combining a compaction model and a facies model to reproduce permeability fields at the regional scale. Phys Chem Earth 29:17–24

    Google Scholar 

  • Grandjeon D (1996) Modélisation stratigraphique déterministe: conception et applications d’un modèle diffusif 3-D multilithologique [Deterministic startigraphic modeling: conception and application of a 3-D diffusive multi-lithologic model]. Ph.D. dissertation, Rennes University, France, 280 pp

  • Grandjeon D, Joseph P (1999) Concepts and applications of a 3-D multiple lithology, diffusive model in stratigraphic modeling. In: Harbaugh JW et al (eds) Numerical experiments in stratigraphy: recent advances in stratigraphic and sedimentologic computer simulations. SEPM Sp. Publ. No. 62, pp 197–210

  • Grandjeon D, Joseph P, Doliguez B (1998) Using a 3-D stratigraphic model to optimize reservoir description. Hart’s Pet Eng Int November:51–58

  • Haldorsen HH, Chang DM (1986) Notes on stochastic shales from outcrop to simulation models. In: Lake LW, Carol HB Jr (eds) Reservoir characterization. Academic, New York, pp 152–167

    Google Scholar 

  • Haldorsen HH, Damsleth E (1990) Stochastic modeling. J Pet Technol 42:404–412, 929–930

    Google Scholar 

  • Harvey CF, Gorelick S (2000) Rate-limited mass transfer or macrodispersion: which dominates plume evolution at the MAcroDispersion Experiment (MADE) Site? Water Resour Res 36(3):637

    Article  Google Scholar 

  • He C, Edwards MG, Durlofsky LJ (2002) Numerical calculation of equivalent cell permeability tensors for general quadrilateral control volumes. Comput Geosci 6:29–47

    Google Scholar 

  • Heller L, Paola C (1992) The large-scale dynamics of grain-size variations in alluvial basins 2. Application to syntectonic conglomerate. Basin Res 4:91–102

    Google Scholar 

  • Herweijer JC (1997) Sedimentary heterogeneity and flow towards a well: assessment of flow through heterogeneous formations. Doctoral thesis, Vrije Universiteit Utrecht, The Nethelands, defended on January 7, 1997

    Google Scholar 

  • Herweijer JC (2004) The impact of sedimentological heterogeneity on flow and transport at the Columbus Air Force Base Test Site. Hydrogeol J (submitted)

  • Houel P, Granjeon D, Robin C, Le Gallo Y (2005) La modélisation géologique 3D du bassin de Paris comme base à l’élaboration d’une modélisation hydrogéologique (3-D geologic modeling of the Paris basin as the basis for developing a hydrogeological model). In: International conference on clay repository, Tours, France, March 14–18, 2005, ANDRA, Ed. Elsevier (to appear, 2005 or 2006)

  • Hu LY (2000) Gradual deformation and iterative calibration of Gaussian-related stochastic models. Math Geol 32(1):87–108

    Google Scholar 

  • Hu LY (2002) Combination of dependent realizations within the gradual deformation method. Math Geol 34(8):953–963

    Google Scholar 

  • Hu LY, Blanc G, Noetinger B (2001a) Gradual deformation and iterative calibration of sequential stochastic simulations. Math Geol 33(4):475–489

    Google Scholar 

  • Hu LY, Le Ravalec M, Blanc G (2001b) Gradual deformation and iterative calibration of truncated Gaussian simulations. Pet Geosci 7:S25–S30

    Google Scholar 

  • Indelman P, Rubin Y (1996) Average flow in heterogeneous media of trending hydraulic conductivity. J Hydrol 183(1–2):57–68

    Google Scholar 

  • Jacod J, Joathon P (1971) Use of random-genetic models in the study of sedimentary processes. J Int Assoc Math Geol 3(3):219–233

    Google Scholar 

  • Jacod J, Joathon P (1972) Conditional simulation of sedimentary cycles in three dimensions. In: Merriam DF (ed) Proceedings of the international sedimentary congress, Heidelberg, August 1971. Plenum, New York, 139–165

    Google Scholar 

  • Jost A, Violette S, Gonçalvès J, Ledoux E, Guyomard Y, Bonnet S, Robin C, Guillocheau F, Ramstein G, Kageyama M, (2004) Palaeoclimate and palaeomorphologic impacts on the Paris basin hydrogeology. IGC – Florence, August 20–28, 2004, comm

  • Journel AG (1983) Nonparametric estimation of spatial distribution. Math Geol 15(3):445–468

    Google Scholar 

  • Journel AG, Alabert FG (1990) New method for reservoir mapping. J Pet Technol February 42(2):212–218

    Google Scholar 

  • Journel AG, Gomez-Hernandez J (1993) Stochatic imaging of the Wilmington clastic sequence. Soc Pet Eng Form Eval March 8(1):33–40

    Google Scholar 

  • Journel AG, Isaaks EK (1984) Conditional indicator simulation: application to a Saskatcheouan uranium deposit. Math Geol 16(7):685–718

    Google Scholar 

  • Kolterman CE, Gorelick SM (1992) Paleoclimatic signature in terrestrial flood deposits. Science 256:1775–1782

    Google Scholar 

  • Kolterman CE, Gorelick SM (1996) Heterogeneity in sedimentary deposits: a review of structure-imitating, process-imitating, and descriptive approaches. Water Resour Res 32:2617–2658

    Google Scholar 

  • Konikow LF, Bredehoeft JD (1992a) Groundwater models cannot be validated. Adv Water Res 15(1):75–83

    Article  Google Scholar 

  • Konikow LF, Bredehoeft JD (1992b) Reply to comment. Adv Water Res 15(6):370–371

    Google Scholar 

  • Krishan S, Journel AG (2003) Spatial connectivity: from variograms to multiple-point measures. Math Geol 35(8):915–925

    Google Scholar 

  • LaBolle EM, Fogg GE (2001) Role of molecular diffusion in contaminant migration and recovery in an alluvial aquifer system. Transp Porous Media 42:155–179

    Google Scholar 

  • Landau LD, Lifschitz EM (1960) Electrodynamics of continuous media. Pergamon, Oxford, UK

    Google Scholar 

  • Lantuéjoul C (1997a) Iterative algorithms for conditional simulations. In: Baafi EY, Schofield NA (eds) Geostatistics Wollongong ‘96, vol 1. Kluwer, Dordrecht, Netherlands, 27–40

    Google Scholar 

  • Lantuéjoul C (1997b) Conditional simulation of object-based models. In: Jeulin D (ed) Advances in theory and applications of random sets. World Scientific, Singapore, pp. 271–288

    Google Scholar 

  • Lantuéjoul C (2002) Geostatistical simulation. Models and algorithms. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lavenue AM, Ramarao BS, de Marsily G, Marietta MG (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: part 2—Application. Water Resour Res 31(3):495–516

    Google Scholar 

  • Lavenue MA, de Marsily G (2001) Three-dimensional interference-test interpretation in a fractured/unfractured aquifer using the pilot point inverse method. Water Resour Res 37(11):2659–2675

    Article  Google Scholar 

  • Long JCS, Billaux D (1987) From field data to fracture network modelling: an example incorporating spatial structure. Water Resour Res 23(7):1201–1216

    Google Scholar 

  • Long JCS, Karasaki K, Davey A, Peterson J, Landsfeld M, Kemeny J, Martel S (1991) An inverse approach to the construction of fracture hydrology models conditioned by geophysical data: An example from the validation exercises at the Stripa Mine. Int J Rock Mech Min Sci Geomech Abstr 28:121–142

    Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266

    Google Scholar 

  • Matheron G (1965) Les variables régionalisées et leur estimation [Regionalized variables and their estimation]. Masson, Paris, 185 pp

    Google Scholar 

  • Matheron G (1967) Eléments pour une théorie des milieux poreux [Elements for a theory of porous media]. Masson, Paris

    Google Scholar 

  • Matheron G (1969) Les processus d’Ambarzoumian et leur application en géologie [The Ambarzoumian processes and their application in geology]. Technical Report N-131, Centre de Géostatistique, Ecole des Mines de Paris, Fontainebleau, France

  • Matheron G (1973) Le krigeage disjonctif [Disjunctive kriging]. Note interne N-360, Centre de Géostatistique, Fontainebleau, 40 pp

  • Matheron G (1976) A simple substitute for conditional expectation: the disjunctive kriging. In: Guarascio M, David M, Huijbregts C (eds) Advanced geostatistics in the mining industry. Reidel, Dordrecht, Holland, pp. 221–236

    Google Scholar 

  • Matheron G, Beucher H, de Fouquet C, Galli A, Guerillot D, Ravenne C (1987) Conditional simulation of the geometry of fluvio-deltaic reservoirs. Society of Petroleum Engineers SPE 16753

  • Matheron G, Beucher H, de Fouquet C, Galli A, Ravenne C (1988) Simulation conditionnelle à trois faciès dans une falaise de la formation du Brent [Conditional simulations with three facies in a cliff of the Brent formation]. Sciences de la Terre, Série Informatique, Nancy, vol 28, pp 213–249

  • Meier PM, Carrera J, Sanchez-Vila X (1999) An evaluation of Jacob’s method for the interpretation of pumping tests in heterogeneous formations. Water Resour Res 34:1011–1025

    Google Scholar 

  • Muskat M (1949) Physical principles of oil production. McGraw-Hill, New York, 922 pp

    Google Scholar 

  • Neuman SP, Witherspoon PA (1968) Theory of flow in aquicludes adjacent to slightly leaky aquifers. Water Resour Res 4(1):103–112

    Google Scholar 

  • Neuzil CE (1994) How permeable are clays and shales? Water Resour Res 30(2)145–150

    Google Scholar 

  • Niemann JD, Bras RL, Veneziano D (2003) A physically based interpolation method for fluvially eroded topography. Water Resour Res 39(1):1017. DOI 10.1029/2001WR001050

    Google Scholar 

  • Noetinger B (1994) The effective permeability of a heterogeneous porous medium. Trans Porous Media 15:99–127

    Google Scholar 

  • Noetinger B (2000) Computing the effective permeability of log-normal permeability fields using renormalization methods. C R Acad Sci Paris/Earth Planet Sci 331:353–357

    Google Scholar 

  • OSS (2003) Système Aquifère du Sahara Septentrional. Gestion commune d’un bassin transfrontière [Aquifer systems of northern Sahara. Common management of a trans-boundary basin] Synthesis Report, 129 pp. Ed. Observatoire du Sahara et du Sahel, Tunis, Tunisia

  • Paola C, Heller PL, Angevine CL (1992) The large scale dynamics of grain-size variations in alluvial basins, 1. Theory Basin Res 4:73–90

    Google Scholar 

  • Paramelle, l’Abbée (1856) L’art de découvrir les sources [The art of discovering springs]. Dalmont et Dunod, Paris

    Google Scholar 

  • Pelletier I (1997) Traitement des données de réservoir en vue d’une simulation de diagenèse. Application à l’illitisation du BRENT dans un champ de la Mer du Nord [Reservoir data processing for a simulation of diagenesis. Application to the illitisation of the BRENT reservoir in a North Sea oil field]. Doctoral thesis, University Denis Diderot (Paris VII), 139 pp

  • Person M, Raffsenperger JP, Ge S, Garven G (1996) Basin-scale hydrogeologic modelling. Rev Geophys 34(1):61–87

    Google Scholar 

  • Person M, Goodwin LB, Rawlings G, Connell S (2000) The evolution of fault-zone permeability and groundwater flow patterns within the Albuquerque Basin of the Rio Grande Rift, NM. J Geochem Explor 69–70:565–568

    Google Scholar 

  • Poirée C (1979) L’eau en poésie [Water in poetry]. Gallimard, Paris

    Google Scholar 

  • Pozdniakov S, Tsang C-F (2004) A self-consistent approach for calculating the effective hydraulic conductivity of a binary, heterogeneous medium. Water Resour Res 40(W05105) DOI 10.1029/2003WR002617

  • Prickett TA (1968) Comparison between analog and digital simulation techniques for aquifer evaluation. In: International Association of Scientific Hydrology, symposium on the use of analog and digital computers in hydrology, Tucson, AZ, pp 624–634

  • Prickett TA (1975) Modeling techniques for groundwater evaluation. In: Ven Chow T (ed) Advances in hydrosciences, vol 10. Academic, New York, pp 1–143

    Google Scholar 

  • Quiblier J, Trémolières P, Zinszner B (1980) A tentative fault propagation description by 3D finite element analysis. Tectonophysics 68:9–212

    Google Scholar 

  • Quiquerez A, Allemand P, Dromart G (2000) DIBAFILL: a 3-D two-lithology diffusive model for basin infilling, Comput Geosci 26(9–10):1029–1042

    Google Scholar 

  • Ramarao BS, Lavenue AM, de Marsily G, Marietta MG (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: part 1—Theory and computational experiments. Water Resour Res 31:3475–3493

    Google Scholar 

  • Raoult Y (1999) La nappe de l’Albien dans le bassin de Paris: de nouvelles idées pour de vieilles eaux [The Albian aquifer in the Paris basin: new ideas for old waters]). Doctoral thesis, University Pierre et Marie Curie, Paris VI, 170 pp

  • Reis LC, Hu LY, de Marsily G, Eschard R (2000) Production data integration using a gradual deformation approach: application to an oil field (offshore Brazil). Society of Petroleum Engineering, Paper SPE 63064

    Google Scholar 

  • Renard Ph, de Marsily G (1997) Calculating equivalent permeability: a review. Adv Water Resour 20(5–6):253–278

    Google Scholar 

  • Renshaw CE, Pollard DD (1994) Numerical simulation of fracture set formation: a fracture mechanics model consistent with experimental observations. J Geophys Res 99:9359–9372

    Google Scholar 

  • Renshaw CE, Pollard DD (1995) Numerical generation of physically based fracture networks. In: Myer LR, Tsang CF, Cook NGW, Goodman RE (eds) Fractured and jointed rock masses, conference proceedings. Balkema, Rotterdam, pp 43–50

    Google Scholar 

  • Revil A, Cathles LM III (2002) Fluid transport by solitary waves along growing faults: a field example from the South Eugene Island Basin, Gulf of Mexico. Earth Planet Sci Lett 202(2):321–335

    Google Scholar 

  • Ritzi RW, Dominic DF, Brown NR, Kausch KW, McAlenney PJ, Basisal MJ (1995) Hydrofacies distribution and correlation in the Miami Valley aquifere system. Water Resour Res 31(12):3271–3281

    Google Scholar 

  • Rivard C, Delay F (2004) Simulations of solute transport in heterogeneous media using 2D percolation networks: Uncorrelated conductivity fields. Hydrogeol J (in press)

    Google Scholar 

  • Rivoirard J (1994) Introduction to disjunctive kriging and non-linear geostatistics. Oxford University Press, Oxford

    Google Scholar 

  • Rivoirard J (2000) Cours de géostatistique multivariable [Lecture notes for multivariate geosatistics]. Note C-172, Ecole des Mines de Paris, Centre de Géostatistique, Fontainebleau

  • Roth C, Chilès JP, de Fouquet C (1998) Combining geostatistics and flow simulators to identify transmissivity. Adv Water Resour 21:555–565

    Google Scholar 

  • Smith L, Freeze RA (1979) Stochastic analysis of steady state groundwater flow in a bounded domain. 1. One-dimensional simulations. 2. Two-dimensional simulations. Water Resour Res 15(3):521–528 and 15(6):1543–1559

    Google Scholar 

  • Strebelle S (2002) Conditional simulation of complex geological structures using multiple point statistics. Math Geol 34(1):1–22

    Google Scholar 

  • Taylor WL, Pollard DD, Aydin A (1999) Fluid flow in discrete joint sets: field observations and numerical simulations. J Geophys Res 104:28983–29006

    Google Scholar 

  • Teles V, Bravard JP, de Marsily G, Perrier E (2001) Modelling of the construction of the Rhône alluvial plain since 15,000 years BP. Sedimentalogy 48:1209–1224

    Google Scholar 

  • Teles V, Delay F, de Marsily G (2004) Comparison between different methods for characterizing the heterogeneity of alluvial media: groundwater flow and transport simulations. J Hydrol 294(1–3):103–121

    Google Scholar 

  • Tetzlaff DM, Harbaugh JW (1989) Simulating clastic sedimentation. Van Nostrand Reinhold, New York, 202 pp

    Google Scholar 

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans Am Geophys Union 2:519–524

    Google Scholar 

  • Theis CV (1967) Aquifers and models. In: Marino MA (ed) Proceedings of the symposium on groundwater hydrology. American Water Resources Association, p 138

  • Thiem G (1906) Hydrologische Methoden [The hydrogeologic method]. Gebhardt, Leipzig, 56 pp

    Google Scholar 

  • Tsang CF, Doughty C (2003) Multirate flowing fluid electric conductivity logging method. Water Resour Res 39(12):1353

    Google Scholar 

  • Tyson HN, Weber EM (1964) Groundwater management for the nation’s future. Computer simulations of groundwater basins. Am Soc Civil Eng J Hydrol Div 90(HY):59–77

    Google Scholar 

  • Vail PR, Audemard F, Bowman SA, Eisner PN, Perez-Cruz C (1991) The stratigraphic signatures of tectonics, eustacy, and sedimentology—an overview: In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin Heidelberg New York, pp 617–657

    Google Scholar 

  • Voss CI (1998) Groundwater modeling: simply powerful (editorial). Hydrogeol J 6(4):6

    Google Scholar 

  • Walton WC, Prickett TA (1963) Hydrogeologic electric analog computers, American Society of Civil Engineering. J Hydraulics Div Paper # 89, pp 67–91. Also reproduced In: Freeze RA, Back W (eds) Benchmark papers in geology, Physical hydrogeology, part II. Well and aquifer hydraulics, vol 72. Hutchinson Ross, Stroudsburg, Pennsylvania, Paper #17, pp 243–267, 1983

    Google Scholar 

  • Warren JE, Price HS (1961) Flow in heterogeneous porous media. Soc Pet Eng J I:153–169

    Google Scholar 

  • Webb EK (1995) Simulation of braided channel topology and topography. Water Resour Res 31:2603–2611

    Google Scholar 

  • Webb EK, Anderson MP (1996) Simulation of preferential flow in three-dimensional, heterogeneous, conductivity fields with realistic internal architecture. Water Resour Res 32:533–545

    Google Scholar 

  • Weissmann GS, Fogg GE (1999) Multi-scale alluvial fan heterogeneity modeled with transition probability geostatistics in a sequence stratigraphic framework. J Hydrol 226:48–65

    Google Scholar 

  • Weissmann GS, Carle SF, Fogg GE (1999) Three-dimensional hydrofacies modeling based on soil surveys and transition probability geostatistics. Water Resour Res 35(6):1761–1770

    Google Scholar 

  • Weissmann GS, Zhang Y, LaBolle EM, Fogg GE (2002) Dispersion of groundwater age in an alluvial aquifer system. Water Resour Res 38(10):1198. DOI 10.1029/2001WR000907

    Article  Google Scholar 

  • Western AW, Blöschl G, Grayson RB (2001) Toward capturing hydrologically significant connectivity in spatial patterns. Water Resour Res 37(1):83–97

    Google Scholar 

  • Wu H, Pollard DD (2002) Imaging 3D fracture networks around boreholes. Am Assoc Pet Geol Bull 86:593–604

    Google Scholar 

  • Zaoui J (1961) Quelques applications des ordinateursaux problèmes d’écoulements souterrains [Some applications of computers to the problem of groundwater flow]. International Association of Hydraulic Research 9th general assemble, Dubrovnik, Yugoslavia

  • Zimmerman DA, de Marsily G, Gotaway CA, Marietta MG, Axness CL, Beauheim R, Bras R, Carrera J, Dagan G, Davies PB, Gallegos D, Galli A, Gomez-Hernandez J, Grindrod P, Gutjahr AL, Kitanidis P, Lavenue AM, McLaughlin D, Neuman SP, Ramarao BS, Ravenne C, Rubin Y (1998) A comparaison of seven geostatistically-based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resour Res 34(6):1373–1413

    Google Scholar 

  • Zinn B, Harvey CF (2003) When good statistical models of aquifer heterogeneity go bad: a comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields. Water Resour Res 39(3):1051–1070

    Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Pr. Graham Fogg and Pr. Gedeon Dagan for their detailed review on an earlier draft of this paper, which helped them immensely to improve the text. A third anonymous reviewer is also thanked for his/her helpful and wise comments. The comments of two colleagues, Jean-Paul Chiles (Paris School of Mines) and Pierre Delfiner (Total), are also gratefully acknowledged. Finally, the authors wish to thank the Editor in Chief, Dr. Clifford Voss, for inviting them to write this paper, and for numerous comments and suggestions throughout the preparation of this paper

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gh. de Marsily.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Marsily, G., Delay, F., Gonçalvès, J. et al. Dealing with spatial heterogeneity. Hydrogeol J 13, 161–183 (2005). https://doi.org/10.1007/s10040-004-0432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-004-0432-3

Keywords

Navigation