Skip to main content
Log in

Macro-and-micromechanical responses of ballast under triaxial shearing using coupled DEM–FDM with flexible and rigid membranes: a comparative study

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Railway ballast undergoes rearrangement, abrasion, and even breakage, when subjected to high-speed train loads. To reproduce the deformation and degradation behavior of ballast under realistic boundaries used in laboratory triaxial tests, bonded particle clusters and clumps sampled within flexible and rigid boundaries were established, using the discrete element method and finite difference method. The models were then calibrated and validated against a series of experimental results. It is found that boundary condition has a considerable effect on the contact force chains and coordination number. The flexible boundary induces more uniform stress distribution between particle contacts, and consequently higher strength, lower dilation, and impartial breakage. A unimodal frequency distribution of the coordination number is observed when using flexible boundary, while rigid boundary can result in multi-modal distribution in breakable specimens. The flexible boundary also induces more particle breakage with high fragmentation. The rigid boundary specimens exhibit a bimodal distribution of particle breakage along the specimen height after test, with fewer fragments existing in the middle part; however, a unimodal distribution of particle breakage is found in the flexible boundary ones, which agrees more with the laboratory observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Sayeed, M.A., Shahin, M.A.: Design of ballasted railway track foundations using numerical modelling. Part I: Dev. Can. Geotech. J. 55, 353–368 (2017)

    Google Scholar 

  2. Koohmishi, M., Palassi, M.: Degradation of railway ballast under compressive loads considering particles rearrangement. Int. J. Pavement Eng. 21(2), 157–169 (2018)

    Article  Google Scholar 

  3. Suiker, A.S.J., Fleck, N.A.: Frictional collapse of granular assemblies. J. Appl. Mech. 71, 350–358 (2004)

    Article  ADS  Google Scholar 

  4. Suiker, A.S., Selig, E.T., Frenkel, R.: Static and cyclic triaxial testing of ballast and subballast. J. Geotech. Geoenviron. Eng. 131, 771–782 (2005)

    Article  Google Scholar 

  5. Aursudkij, B., McDowell, G.R., Collop, A.C.: Cyclic loading of railway ballast under triaxial conditions and in a railway test facility. Granul. Matter 11, 391–401 (2009)

    Article  Google Scholar 

  6. Sun, Q., Indraratna, B., Nimbalkar, S.: Deformation and degradation mechanisms of railway ballast under high frequency cyclic loading. J. Geotech. Geoenviron. Eng. 142, 04015056 (2016)

    Article  Google Scholar 

  7. Indraratna, B., Babar Sajjad, M., Ngo, T., Gomes Correia, A., Kelly, R.: Improved performance of ballasted tracks at transition zones: a review of experimental and modelling approaches. Transp. Geotech. 21, 100260 (2019)

    Article  Google Scholar 

  8. Indraratna, B., Sun, Y., Nimbalkar, S.: Laboratory assessment of the role of particle size distribution on the deformation and degradation of ballast under cyclic loading. J. Geotech. Geoenviron. Eng. 142, 04016016 (2016)

    Article  Google Scholar 

  9. Singh, R.P., Nimbalkar, S., Singh, S., Choudhury, D.: Field assessment of railway ballast degradation and mitigation using geotextile. Geotext. Geomembr. 48(3), 275–283 (2019)

    Article  Google Scholar 

  10. Gu, Q., Zhao, C., Bian, X., Morrissey, J.P., Ooi, J.Y.: Trackbed settlement and associated ballast degradation due to repeated train moving loads. Soil Dyn. Earthq. Eng. 153, 107109 (2022)

    Article  Google Scholar 

  11. Anderson, W.F., Fair, P.: Behavior of railroad ballast under monotonic and cyclic loading. J. Geotech. Geoenviron. Eng. 134, 316–327 (2008)

    Article  Google Scholar 

  12. Sun, Y., Zheng, C.: Breakage and shape analysis of ballast aggregates with different size distributions. Particuology 35, 84–92 (2017)

    Article  Google Scholar 

  13. Marsal, R.J.: Large scale testing of rockfill materials. J. Soil Mech. Found. Div. 93, 27–43 (1967)

    Article  Google Scholar 

  14. Ahmed, S., Harkness, J., Le Pen, L., Powrie, W., Zervos, A.: Numerical modelling of railway ballast at the particle scale. Int. J. Numer. Anal. Meth. Geomech. 40, 713–737 (2015)

    Article  Google Scholar 

  15. Ngo, N., Indraratna, B., Rujikiatkamjorn, C., Mahdi Biabani, M.: Experimental and discrete element modeling of geocell-stabilized subballast subjected to cyclic loading. J. Geotech. Geoenviron. Eng. 142, 04015100 (2016)

    Article  Google Scholar 

  16. Li, H., McDowell, G.R.: Discrete element modelling of under sleeper pads using a box test. Granul. Matter 20, 26 (2018)

    Article  Google Scholar 

  17. Li, L., Nimbalkar, S., Zhong, R.: Finite element model of ballasted railway with infinite boundaries considering effects of moving train loads and Rayleigh waves. Soil Dyn. Earthq. Eng. 114, 147–153 (2018)

    Article  Google Scholar 

  18. Suhr, B., Six, K.: Simple particle shapes for DEM simulations of railway ballast: influence of shape descriptors on packing behaviour. Granul. Matter 22, 43 (2020)

    Article  Google Scholar 

  19. Liu, Y., Gao, R., Chen, J.: A new DEM model to simulate the abrasion behavior of irregularly-shaped coarse granular aggregates. Granul. Matter 23, 61 (2021)

    Article  Google Scholar 

  20. Chen, J., Vinod, J.S., Indraratna, B., Ngo, T., Liu, Y.: DEM study on the dynamic responses of a ballasted track under moving loading. Comput. Geotech. 153, 105105 (2023)

    Article  Google Scholar 

  21. Tolomeo, M., McDowell, G.R.: DEM study of an “avatar” railway ballast with real particle shape, fabric and contact mechanics. Granular Matter 25, 32 (2023)

    Article  Google Scholar 

  22. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  23. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)

    Article  Google Scholar 

  24. Minh, N.H., Cheng, Y.P., Thornton, C.: Strong force networks in granular mixtures. Granular Matter 16, 69–78 (2014)

    Article  Google Scholar 

  25. Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41, 1329–1364 (2004)

    Article  Google Scholar 

  26. Lim, W.L., McDowell, G.R.: Discrete element modelling of railway ballast. Granul. Matter 7, 19–29 (2005)

    Article  Google Scholar 

  27. McDowell, G.R., Li, H.: Discrete element modelling of scaled railway ballast under triaxial conditions. Granul. Matter 18, 1–10 (2016)

    Article  Google Scholar 

  28. Qu, T., Feng, Y.T., Wang, Y., Wang, M.: Discrete element modelling of flexible membrane boundaries for triaxial tests. Comput. Geotech. 115, 103154 (2019)

    Article  Google Scholar 

  29. de Bono, J., Mcdowell, G., Wanatowski, D.: Discrete element modelling of a flexible membrane for triaxial testing of granular material at high pressures. Geotech. Lett. 2, 199–203 (2012)

    Article  Google Scholar 

  30. Indraratna, B., Ngo, T., Rujikiatkamjorn, C.: Performance of ballast influenced by deformation and degradation: laboratory testing and numerical modeling. Int. J. Geomech. 20, 04019138 (2020)

    Article  Google Scholar 

  31. Indraratna, B., Ionescu, D., Christie, H.: Shear behavior of railway ballast based on large-scale triaxial tests. J. Geotech. Geoenviron. Eng. 124, 439–449 (1998)

    Article  Google Scholar 

  32. Lu, M., McDowell, G.R.: Discrete element modelling of railway ballast under monotonic and cyclic triaxial loading. Géotechnique 60(6), 459–467 (2010)

    Article  Google Scholar 

  33. Itasca, Itasca’s FLAC3D Documentation, in: Itasca (Ed.), 2019

  34. Lackenby, J., Indraratna, B., Mcdowell, G.R., et al.: Effect of confining pressure on ballast degradation and deformation under cyclic triaxial loading. Geotechnique 57, 6 (2007)

    Article  Google Scholar 

  35. Pinzón, G., Andò, E., Desrues, J., Viggiani, G.: Fabric evolution and strain localisation in inherently anisotropic specimens of anisometric particles (lentils) under triaxial compression. Granul. Matter 25, 15 (2023)

    Article  Google Scholar 

  36. Liao, D., Yang, Z.X.: Effect of fabric anisotropy on bearing capacity and failure mode of strip footing on sand: an anisotropic model perspective. Comput. Geotech. 138, 104330 (2021)

    Article  Google Scholar 

  37. Liao, D., Yang, Z.X., Xu, T.T.: J2-deformation-type soil model coupled with state-dependent dilatancy and fabric evolution: multiaxial formulation and FEM implementation. Comput. Geotech. 129, 103674 (2021)

    Article  Google Scholar 

  38. Xiao, Y., Yuan, Z., Lv, Y., Wang, L., Liu, H.: Fractal crushing of carbonate and quartz sands along the specimen height under impact loading. Construct. Build. Mater. 182, 188–199 (2018)

    Article  Google Scholar 

Download references

Funding

This study is supported by the National Natural Science Foundation of China (Grant No. 523040511, Grant No. 51708438, Grant No. 523025011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifei Sun.

Ethics declarations

Conflict of interest

The authors declare that there is no known conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Wu, Dk., Sun, Y. et al. Macro-and-micromechanical responses of ballast under triaxial shearing using coupled DEM–FDM with flexible and rigid membranes: a comparative study. Granular Matter 26, 42 (2024). https://doi.org/10.1007/s10035-024-01412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-024-01412-8

Keywords

Navigation