Skip to main content
Log in

An inclusion model for predicting granular elasticity incorporating force chain mechanics

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Granular media is ubiquitous, playing a vital role in a diverse set of applications. The complex microstructure of granular media results from assorted particle shapes, morphologies, and packings, make it difficult to predict its macroscopic behavior. Under compression, these complex microstructures enable highly anisotropic and heterogenous behaviors, including creation of highly-loaded particles (i.e. force chains) supported by clusters of minimally-loaded particles. While many existing constitutive models relate state variables describing microscale behavior to continuum properties, these models do not generally consider the mesoscale interactions between the force chain network and minimally-loaded particles. Here, we develop a micromechanics model that connects micro-scale force chain mechanics to macro-scale mechanical behavior through explicit consideration of the interaction between force chains and minimally-loaded particles. We first examine the elastic behavior of a force chain using a spring model, explicitly considering the mesoscale interactions between the force-chains and surrounding regions. We then construct an equivalent inclusion problem to calculate macroscopic mechanical response as analytical functions of microscopic properties, with proper consideration of mesoscale interactions. We present our calibration and validation approaches, showing the model’s predictive abilities. Finally, we examine the effect of relevant microscopic quantities on macroscopic response, demonstrating the importance of these mesoscale interactions on bulk deviatoric behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M.R., Lipson, H., Jaeger, H.M.: Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. 107(44), 18809–18814 (2010)

    ADS  Google Scholar 

  2. Schuettpelz, C., Fratta, D., Edil, T.B.: Evaluation of the zone of influence and stiffness improvement from geogrid reinforcement in granular materials. Transp. Res. Rec. 2116(1), 76–84 (2009)

    Google Scholar 

  3. Zheng, H., Wang, D., Tong, X., Li, L., Behringer, R.P.: Granular scale responses in the shear band region. Granul. Matter 21(4), 1–6 (2019)

    ADS  Google Scholar 

  4. Desrues, J., Andò, E.: Strain localisation in granular media. C. R. Phys. 16(1), 26–36 (2015)

    ADS  Google Scholar 

  5. Zhai, C., Albayrak, N., Engqvist, J., Hall, S.A., Wright, J., Majkut, M., Herbold, E.B., Hurley, R.C.: Quantifying local rearrangements in three-dimensional granular materials: rearrangement measures, correlations, and relationship to stresses. Phys. Rev. E 105(1), 014904 (2022)

    ADS  MathSciNet  Google Scholar 

  6. Walsh, S.D., Tordesillas, A., Peters, J.F.: Development of micromechanical models for granular media. Granul. Matter 9(5), 337–352 (2007)

    Google Scholar 

  7. Pierazzo, E., Melosh, H.: Hydrocode modeling of oblique impacts: the fate of the projectile. Meteorit. Planet. Sci. 35(1), 117–130 (2000)

    ADS  Google Scholar 

  8. Saurel, R., Fraysse, F., Furfaro, D., Lapebie, E.: Reprint of: multiscale multiphase modeling of detonations in condensed energetic materials. Comput. Fluids 169, 213–229 (2018)

    MathSciNet  Google Scholar 

  9. Einav, I.: Breakage mechanics-part II: modelling granular materials. J. Mech. Phys. Solids 55(6), 1298–1320 (2007)

    ADS  MathSciNet  Google Scholar 

  10. Yu, F.: Particle breakage in granular soils: a review. Part. Sci. Technol. 39(1), 91–100 (2021). https://doi.org/10.1080/02726351.2019.1666946

    Article  Google Scholar 

  11. Hicher, P.Y., Chang, C.S.: An anisotropic non linear elastic model for particulate materials. J. Geotech. Geoenviron. Eng. 132(8), 1052–1061 (2006)

    Google Scholar 

  12. Handley, C., Lambourn, B., Whitworth, N., James, H., Belfield, W.: Understanding the shock and detonation response of high explosives at the continuum and meso scales. Appl. Phys. Rev. 5(1), 011303 (2018)

    ADS  Google Scholar 

  13. Wünnemann, K., Collins, G., Melosh, H.: A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus 180(2), 514–527 (2006)

    ADS  Google Scholar 

  14. Bakarji, J., Tartakovsky, D.M.: Microstructural heterogeneity drives reaction initiation in granular materials. Appl. Phys. Lett. 114(25), 254101 (2019)

    ADS  Google Scholar 

  15. Loiseau, J., Pontalier, Q., Milne, A., Goroshin, S., Frost, D.: Terminal velocity of liquids and granular materials dispersed by a high explosive. Shock Waves 28(3), 473–487 (2018)

    ADS  Google Scholar 

  16. Wardlaw, A.B., Jr., McKeown, R., Chen, H.: Implementation and application of the p-alpha equation of state in the DYSMAS code. Technology Representatives, Naval Surface Warfare Center Dahlgren Division (1996)

  17. Golub, V., Mirova, O.: Shock waves in granular media. In: Zhang, F. (ed.) Shock Wave Science and Technology Reference Library, pp. 325–351. Springer, Berlin (2007)

    Google Scholar 

  18. Benson, D., Nesterenko, V., Jonsdottir, F., Meyers, M.: Quasistatic and dynamic regimes of granular material deformation under impulse loading. J. Mech. Phys. Solids 45(11–12), 1955–1999 (1997)

    ADS  Google Scholar 

  19. Carroll, M.M., Holt, A.: Static and dynamic pore-collapse relations for ductile porous materials. J. Appl. Phys. 43(4), 1626–1636 (1972)

    ADS  Google Scholar 

  20. Capelli, A., Reiweger, I., Schweizer, J.: Studying snow failure with fiber bundle models. Front. Phys. 8, 236 (2020)

    Google Scholar 

  21. Hidalgo, R., Kun, F., Kovács, K., Pagonabarraga, I.: Avalanche dynamics of fiber bundle models. Phys. Rev. E 80(5), 051108 (2009)

    ADS  Google Scholar 

  22. Hidalgo, R.C., Grosse, C.U., Kun, F., Reinhardt, H.W., Herrmann, H.J.: Evolution of percolating force chains in compressed granular media. Phys. Rev. Lett. 89(20), 205501 (2002)

    ADS  Google Scholar 

  23. Michlmayr, G., Or, D., Cohen, D.: Fiber bundle models for stress release and energy bursts during granular shearing. Phys. Rev. E 86(6), 061307 (2012)

    ADS  Google Scholar 

  24. Emeriault, F., Cambou, B.: Micromechanical modelling of anisotropic non-linear elasticity of granular medium. Int. J. Solids Struct. 33(18), 2591–2607 (1996)

    Google Scholar 

  25. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(7045), 1079–1082 (2005)

    ADS  Google Scholar 

  26. Nicot, F., Darve, F., R. Group, V. of Structures: A multi-scale approach to granular materials. Mech. Mater. 37(9), 980–1006 (2005)

    Google Scholar 

  27. Seguin, A.: Experimental study of some properties of the strong and weak force networks in a jammed granular medium. Granul. Matter 22(2), 1–8 (2020)

    MathSciNet  Google Scholar 

  28. Liu, Y., Sun, W., Yuan, Z., Fish, J.: A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials. Int. J. Numer. Meth. Eng. 106(2), 129–160 (2016)

    MathSciNet  Google Scholar 

  29. Rechenmacher, A., Abedi, S., Chupin, O.: Evolution of force chains in shear bands in sands. Géotechnique 60(5), 343–351 (2010)

    Google Scholar 

  30. Abedi, S., Rechenmacher, A.L., Orlando, A.D.: Vortex formation and dissolution in sheared sands. Granul. Matter 14(6), 695–705 (2012)

    Google Scholar 

  31. Zhai, C., Herbold, E., Hall, S., Hurley, R.: Particle rotations and energy dissipation during mechanical compression of granular materials. J. Mech. Phys. Solids 129, 19–38 (2019)

    ADS  MathSciNet  Google Scholar 

  32. Tordesillas, A.: Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Phil. Mag. 87(32), 4987–5016 (2007)

    ADS  Google Scholar 

  33. Andò, E., Hall, S.A., Viggiani, G., Desrues, J., Bésuelle, P.: Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotech. 7(1), 1–13 (2012)

    Google Scholar 

  34. Hadda, N., Nicot, F., Bourrier, F., Sibille, L., Radjai, F., Darve, F.: Micromechanical analysis of second order work in granular media. Granul. Matter 15(2), 221–235 (2013)

    Google Scholar 

  35. Hadda, N., Nicot, F., Wan, R., Darve, F.: Microstructural self-organization in granular materials during failure. C. R. Méc. 343(2), 143–154 (2015)

    ADS  Google Scholar 

  36. Hadda, N., Sibille, L., Nicot, F., Wan, R., Darve, F.: Failure in granular media from an energy viewpoint. Granul. Matter 18(3), 1–17 (2016)

    Google Scholar 

  37. Sun, Q., Wang, G., Hu, K.: Some open problems in granular matter mechanics. Prog. Nat. Sci. 19(5), 523–529 (2009)

    Google Scholar 

  38. Wautier, A., Veylon, G., Miot, M., Pouragha, M., Nicot, F., Wan, R., Darve, F.: Multiscale modelling of granular materials in boundary value problems accounting for mesoscale mechanisms. Comput. Geotech. 134, 104143 (2021)

    Google Scholar 

  39. Coppersmith, S., Liu, C.-H., Majumdar, S., Narayan, O., Witten, T.: Model for force fluctuations in bead packs. Phys. Rev. E 53(5), 4673 (1996)

    ADS  Google Scholar 

  40. Hardin, B.O., Blandford, G.E.: Elasticity of particulate materials. J. Geotech. Eng. 115(6), 788–805 (1989)

    Google Scholar 

  41. Lade, P.V., Nelson, R.B.: Modelling the elastic behaviour of granular materials. Int. J. Numer. Anal. Meth. Geomech. 11(5), 521–542 (1987)

    Google Scholar 

  42. Roesler, S.K.: Anisotropic shear modulus due to stress anisotropy. J. Geotech. Eng. Div. 105(7), 871–880 (1979)

    Google Scholar 

  43. Shahin, G., Herbold, E.B., Hall, S.A., Hurley, R.C.: Quantifying the hierarchy of structural and mechanical length scales in granular systems. Extreme Mech. Lett. 51, 101590 (2022)

    Google Scholar 

  44. Popov, V.L., et al.: Contact Mechanics and Friction. Springer, Berlin (2010)

    Google Scholar 

  45. Li, S., Wang, G.: Introduction to Micromechanics and Nanomechanics, 2nd edn. World Scientific, Singapore (2018). https://doi.org/10.1142/8644

    Book  Google Scholar 

  46. Tordesillas, A., Muthuswamy, M.: On the modeling of confined buckling of force chains. J. Mech. Phys. Solids 57(4), 706–727 (2009)

    ADS  MathSciNet  Google Scholar 

  47. Tordesillas, A., Muthuswamy, M., Walsh, S.D.: Mesoscale measures of nonaffine deformation in dense granular assemblies. J. Eng. Mech. 134(12), 1095–1113 (2008). https://doi.org/10.1061/(ASCE)0733-9399(2008)134:12(1095)

    Article  Google Scholar 

  48. Tanaka, K., Mori, T.: Note on volume integrals of the elastic field around an ellipsoidal inclusion. J. Elast. 2(3), 199–200 (1972)

    Google Scholar 

  49. Zou, W., He, Q., Huang, M., Zheng, Q.: Eshelby’s problem of non-elliptical inclusions. J. Mech. Phys. Solids 58(3), 346–372 (2010)

    ADS  MathSciNet  Google Scholar 

  50. Eroshkin, O., Tsukrov, I.: On micromechanical modeling of particulate composites with inclusions of various shapes. Int. J. Solids Struct. 42(2), 409–427 (2005)

    Google Scholar 

  51. Rothenburg, L., Bathurst, R.: Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39(4), 601–614 (1989)

    Google Scholar 

  52. Radjai, F., Wolf, D.E., Jean, M., Moreau, J.-J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61 (1998)

    ADS  Google Scholar 

  53. Zhang, X., Wang, W., Zhang, T., Liu, X., Liu, K.: Contributions of strong and weak subnetworks to the shear strength of dense granular inertial flow. Tribol. Int. 177, 108022 (2023)

    Google Scholar 

  54. Antony, S.J.: Evolution of force distribution in three-dimensional granular media. Phys. Rev. E 63(1), 011302 (2000)

    ADS  Google Scholar 

  55. Kruyt, N.P.: On weak and strong contact force networks in granular materials. Int. J. Solids Struct. 92, 135–140 (2016)

    Google Scholar 

  56. Liu, J., Wautier, A., Bonelli, S., Nicot, F., Darve, F.: Macroscopic softening in granular materials from a mesoscale perspective. Int. J. Solids Struct. 193, 222–238 (2020)

    Google Scholar 

  57. Tordesillas, A., Walker, D.M., Lin, Q.: Force cycles and force chains. Phys. Rev. E 81(1), 011302 (2010)

    ADS  Google Scholar 

  58. Sadd, M.H.: Elasticity: Theory, Applications, and Numerics. Academic Press, Cambridge (2009)

    Google Scholar 

  59. Chiang, C.-R.: Eshelby’s tensor and its connection to ellipsoidal cavity problems with application to 2D transformation problems in orthotropic materials. Acta Mech. 226(8), 2631–2644 (2015)

    MathSciNet  Google Scholar 

  60. Yang, H.C., Chou, Y.T.: Generalized plane problems of elastic inclusions in anisotropic solids. J. Appl. Mech. 43(3), 424–430 (1976). https://doi.org/10.1115/1.3423884

    Article  ADS  Google Scholar 

  61. Jorio, A., Dresselhaus, G., Dresselhaus, M.S.: Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, vol. 111. Springer, Berlin (2008)

    Google Scholar 

  62. Chen, Q., Gao, Y., Yuan, Q., Wang, Y.-H.: The correlation of macro deformation and micro kinematics for dense granular material subjected to shearing. Comput. Geotech. 141, 104523 (2022)

    Google Scholar 

  63. Thornton, C., Antony, S.: Quasi–static deformation of particulate media. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 356(1747), 2763–2782 (1998)

    ADS  Google Scholar 

  64. Königsberger, M., Hlobil, M., Delsaute, B., Staquet, S., Hellmich, C., Pichler, B.: Hydrate failure in ITZ governs concrete strength: a micro-to-macro validated engineering mechanics model. Cem. Concr. Res. 103, 77–94 (2018)

    Google Scholar 

  65. Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, Amsterdam (2013)

    Google Scholar 

  66. Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dyn. Int. J. 12(2–3), 140–152 (2012)

    MathSciNet  Google Scholar 

  67. Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 76(1), 637–649 (1982)

    ADS  Google Scholar 

  68. Da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., Chevoir, F.: Rheophysics of dense granular materials: Discrete simulation of plane shear flows. Phys. Rev. E 72(2), 021309 (2005)

    ADS  Google Scholar 

  69. Pouragha, M., Wan, R.: Non-dissipative structural evolutions in granular materials within the small strain range. Int. J. Solids Struct. 110, 94–105 (2017)

    Google Scholar 

  70. Peters, J., Muthuswamy, M., Wibowo, J., Tordesillas, A.: Characterization of force chains in granular material. Phys. Rev. E 72(4), 041307 (2005)

    ADS  Google Scholar 

  71. Bagi, K.: Stress and strain in granular assemblies. Mech. Mater. 22(3), 165–177 (1996)

    Google Scholar 

  72. Bhattacharya, D., Prashant, A.: Stress path tests with local deformation profile in flexible boundary plane strain device. J. Geotech. Geoenviron. Eng. 147(12), 04021162 (2021)

    Google Scholar 

  73. Kuhn, M.R., Bagi, K.: Specimen size effect in discrete element simulations of granular assemblies. J. Eng. Mech. 135(6), 485–492 (2009)

    Google Scholar 

  74. Makse, H.A., Gland, N., Johnson, D.L., Schwartz, L.M.: Why effective medium theory fails in granular materials. Phys. Rev. Lett. 83(24), 5070 (1999)

    ADS  Google Scholar 

  75. Magnanimo, V., La Ragione, L., Jenkins, J.T., Wang, P., Makse, H.A.: Characterizing the shear and bulk moduli of an idealized granular material. EPL (Europhys. Lett.) 81(3), 34006 (2008)

    ADS  Google Scholar 

  76. Rothenburg, L., Kruyt, N.: On limitations of the uniform strain assumption in micromechanics of granular materials. In: Kishino, Y. (ed.) Powders and Grains 2001, pp. 191–194. CRC Press, Boca Raton (2020)

    Google Scholar 

  77. Jenkins, J., Johnson, D., La Ragione, L., Makse, H.: Fluctuations and the effective moduli of an isotropic, random aggregate of identical, frictionless spheres. J. Mech. Phys. Solids 53(1), 197–225 (2005)

    ADS  MathSciNet  Google Scholar 

  78. Kuwano, R., Jardine, R.: On the applicability of cross-anisotropic elasticity to granular materials at very small strains. Géotechnique 52(10), 727–749 (2002)

    Google Scholar 

  79. Tordesillas, A., Walsh, D.S.: Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol. 124(1–2), 106–111 (2002)

    Google Scholar 

  80. Luding, S.: Micro-macro transition for anisotropic, frictional granular packings. Int. J. Solids Struct. 41(21), 5821–5836 (2004)

    Google Scholar 

  81. Walsh, S., Tordesillas, A.: Finite element methods for micropolar models of granular materials. Appl. Math. Model. 30(10), 1043–1055 (2006)

    Google Scholar 

  82. Kumar, N., Luding, S., Magnanimo, V.: Macroscopic model with anisotropy based on micro–macro information. Acta Mech. 225(8), 2319–2343 (2014)

    MathSciNet  Google Scholar 

  83. Thornton, C., Zhang, L.: A numerical examination of shear banding and simple shear non-coaxial flow rules. Phil. Mag. 86(21–22), 3425–3452 (2006)

    ADS  Google Scholar 

  84. Alhasadi, M.F., Federico, S.: Eshelby’s inclusion problem in large deformations. Z. Angew. Math. Phys. 72, 1–14 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the U.S. Geological Survey Earthquake Hazards Program through Award No. G23AP00268.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Hurley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Eshelby tensor for an orthotropic matrix

When creating the equivalent inclusion problem, an orthotropic matrix is assumed. Such an assumption affects the form of the Eshelby tensor. Previous work has found a closed-form solution for the Eshelby tensor through use of Airy stress functions paired with a complex variable formulation [59, 60]. The Eshelby tensor for an inclusion in an orthotropic matrix can be expressed as follows. We note that the expansion for \(S_\alpha \) reported in Chiang et al. is corrected here [59, 60].

$$\begin{aligned} \begin{aligned}&S_{1111} = P_\alpha \left( e^2 C_{1111} + \frac{e\lambda \left( \sqrt{C_{1111}C_{2222}}-C_{1122} \right) }{2C_{1212}S_\alpha }\right. \\&\quad \left. \left( \sqrt{C_{1111}C_{2222}} + C_{1122} + C_{1212} \right) \right) \\&\quad S_{1122} = P_\alpha \left( e^2 C_{1122} - \frac{e \left( \sqrt{C_{1111}C_{2222}}-C_{1122} \right) }{2\lambda S_\alpha } \right) \\&\quad S_{2211} = P_\alpha \left( \lambda ^2 C_{1122} - \frac{e \lambda ^3 \left( \sqrt{C_{1111}C_{2222}}-C_{1122} \right) }{2 S_\alpha } \right) \\&\quad S_{2222} = P_\alpha \left( \lambda ^2 C_{1111} + \frac{e\lambda \left( \sqrt{C_{1111}C_{2222}}-C_{1122} \right) }{2C_{1212}S_\alpha }\right. \\&\quad \left. \left( \sqrt{C_{1111}C_{2222}} + C_{1122} + C_{1212} \right) \right) \\&\quad 2 S_{1212} = \frac{P_\alpha }{S_\alpha } \left( 1 + e^2 \lambda ^2 \right) S_\alpha \sqrt{C_{1111}C_{2222}} \\&\quad + e\lambda \left( \sqrt{C_{1111}C_{2222}}-C_{1122} \right) \end{aligned} \end{aligned}$$
(A.1)
$$\begin{aligned} \begin{aligned}&\text {where, }\quad e = \frac{b}{a},\quad \lambda = \left( \frac{C_{1111}}{C_{2222}}\right) ^{1/4},\\&\quad S_\alpha = \sqrt{1 + \frac{C}{4}},\quad P_\alpha = \frac{1}{Q\sqrt{C_{1111}C_{2222}}}, \\&\quad C = \frac{(\sqrt{C_{1111}C_{2222}} + C_{1122})(\sqrt{C_{1111}C_{2222}} - C_{1122} - 2C_{1212})}{C_{1212}\sqrt{C_{1111}C_{2222}}}, \\&\quad Q = 1 + e^2 \lambda ^2 + 2 e \lambda S_\alpha \end{aligned} \end{aligned}$$
(A.2)

Appendix 2: Buckling criterion for a triplet

The potential energy density for a triplet in terms of the degrees of freedoms of the particles is given in Eq. 11. Looking at the potential energy itself, we have

$$\begin{aligned} \psi = k^n \left( \delta n\right) ^2 + \frac{1}{2} k^s \left( \delta l \cos \theta d\theta \right) ^2 \end{aligned}$$
(B.1)

To find instabilities, we obtain an energy expression that incorporates virtual work performed on the system.

$$\begin{aligned} \begin{aligned} V&= \psi - W \\ V&= k^n \left( \delta n\right) ^2 + \frac{1}{2} k^s \left( \delta l \cos \theta d\theta \right) ^2 - F^t\Delta \\ V&= k^n \left( \delta n\right) ^2 + \frac{1}{2} k^s \left( \delta l \cos \theta d\theta \right) ^2 \\&\quad - F^t\left( 4R \cos \theta - 2 \delta l \cos (\theta + \delta \theta ) \right) \end{aligned} \end{aligned}$$
(B.2)

\(F^t\) represents a force along the triplet direction, \(\textbf{n}\), as shown in Fig. 1, while \(\Delta \) represents the displacement associated with \(F^t\). Recasting \(\delta l\) in terms of particle radius and perturbation from it, we take \(\delta l = 2R - \delta n\). Furthermore, using the definition of a derivative \(\cos \theta d\theta \approx \sin (\theta + d\theta ) - \sin \theta \), we can re-express Eq. B.2 as

$$\begin{aligned} \begin{aligned} V = k^n \left( \delta n\right) ^2&+ \frac{1}{2} k^s \left( \left( 2R - \delta n \right) \left( \sin \left( \theta + d\theta \right) - \sin \theta \right) \right) ^2 \\&- F^t\left( 4R \cos \theta - 2 \left( 2R - \delta n \right) \cos (\theta + \delta \theta ) \right) \end{aligned} \end{aligned}$$
(B.3)

We take derivatives of Eq. B.3 with respect to the degrees of freedom in the triplet system - \(\delta n\) and \(\delta \theta \). Using these derivatives, we obtain a system of two equations.

$$\begin{aligned} \begin{aligned}&2 k^n \delta n - 2 F_c \cos \left( \theta + \delta \theta \right) \\&\quad - k^s (2R - \delta n) (\sin \left( \theta + \delta \theta \right) - \sin \theta )^2 = 0 \\&\quad -2 F_c (2R - \delta n) \sin \left( \theta + \delta \theta \right) \\&\quad + k^s (2R - \delta n)^2 \cos \left( \theta + \delta \theta \right) \left( \sin \left( \theta + \delta \theta \right) - \sin \theta \right) = 0 \end{aligned} \end{aligned}$$
(B.4)

For a triplet with a given configuration angle, \(\theta \), we can compute the corresponding \(F_c\). In most cases, the system in B.4 would need to be solved numerically. However, an analytical solution can be obtained for the special case of a triplet with \(\theta = 0\). This simplifies the system given in B.4 to

$$\begin{aligned} \begin{aligned}&2 k^n \delta n - 2 F_c \cos \left( \delta \theta \right) - k^s (2R - \delta n) \sin ^2 \left( \delta \theta \right) = 0 \\ -&2 F_c (2R - \delta n) \sin \left( \delta \theta \right) + k^s (2R - \delta n)^2 \cos \left( \delta \theta \right) \sin \left( \delta \theta \right) = 0 \end{aligned} \end{aligned}$$
(B.5)

Solving the system of equations in B.5 gives a simplified expression for the critical buckling load.

$$\begin{aligned} F_c = \frac{k^nk^s R\cos (\delta \theta )}{2k^n + k^s} \approx \frac{k^nk^s R}{2k^n + k^s} \end{aligned}$$
(B.6)

For a given \(k^s\), if a load along the triplet exceeds \(F_c\), the triplet is not considered to be a part of the strong network.

Appendix 3: Testing result chart

Table 3 For the validation process, 26 unique loading paths were chosen. The strains were chosen by varying the principal strains (\(\epsilon _1\) and \(\epsilon _2\)) and the angle between \(\epsilon _1\) and the x-axis (the angle \(\beta \)). These strains were then transformed accordingly (to \(\epsilon _{xx}\), \(\epsilon _{yy}\), \(\epsilon _{xy}\)) and imposed on the assembly (Fig. 8). The listed errors are between model prediction and mean response measured from five DEM simulations. The median error for \(\tilde{E}_x\), \(\tilde{E}_y\), and \(\tilde{G}_{xy}\) are 13%, 13%, and 9% respectively. The large errors shown are due to increased sensitivity in error measurement due to lower stiffness values and stochasticity of the system

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Ramesh, K.T. & Hurley, R. An inclusion model for predicting granular elasticity incorporating force chain mechanics. Granular Matter 26, 40 (2024). https://doi.org/10.1007/s10035-024-01411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-024-01411-9

Keywords

Mathematics Subject Classification

Navigation