Skip to main content
Log in

Approximate coefficient of restitution for nonlinear viscoelastic contact with external load

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We derive an approximate coefficient of restitution (CoR) for a single bead impacting the ground when a constant external load acts upon the colliding body. Some of the main applications concern classical nonlinear viscoelastic models such as the Kuwabara-Kono model, Simon-Hunt-Crossley model, and Hertzian stiffness with linear damping, however the proposed approach applies to a wide class of nonlinear viscoelastic contact models. It is shown that suitable expansions allow to derive a computable expression of the CoR which provides accurate predictions for a valuable range of external loads, viscosity coefficients and impact velocities.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Goldsmith, W.: Impact: The Theory and Physical Behavior of Colliding Solids. E. Arnold Publishers, London (1960)

    MATH  Google Scholar 

  2. Routh, E.J.: An Elementary Treatise on the Dynamics of a System of Rigid Bodies. Macmillan, London (1877)

    Google Scholar 

  3. Darboux, G.: Mémoire sur la théorie algébrique des forces quadratiques. J. de Mathématiques Pures et Appliquées 19, 347–396 (1874)

    MATH  Google Scholar 

  4. Darboux, G.: Etude géométrique sur les percussions et le choc des corps. Bull. des Sci. Mathématiques et Astronomiques 4(1), 126–160 (1880)

    MathSciNet  MATH  Google Scholar 

  5. Brogliato, B.: Nonsmooth Mechanics. Models, Dynamics and Control, 3rd edn. Springer, Switzerland (2016)

  6. Nguyen, N.S., Brogliato, B.: Multiple Impacts in Dissipative Granular Chains. Lecture Notes in Applied and Computational Mechanics, vol. 72. Springer, Berlin Heidelberg (2014)

  7. Lee, J., Herrmann, H.J.: Angle of repose and angle of marginal stability: molecular dynamics of granular particles. J. Phys. A: Math. Gen. 26, 373–383 (1993)

    Article  ADS  Google Scholar 

  8. Herbold, E.B., Nesterenko, V.F.: Shock wave structure in a strongly nonlinear lattice with viscous dissipation. Phys. Rev. E 75, 021304 (2007)

    Article  ADS  Google Scholar 

  9. Alves, J., Peixinho, N., da Silva, M.T., Flores, P., H.M.Lankaranic: A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids. Mechanism and Machine Theory 85, 172–188 (2015)

  10. Corral, E., Moreno, R.G., García, M.G., Castejón, C.: Nonlinear phenomena of contact in multibody systems dynamics: a review. Nonlinear Dyn. 104, 1269–1295 (2021)

    Article  Google Scholar 

  11. Tsuji, Y., Tanaka, T., Ishida, T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71(3), 239–250 (1992)

    Article  Google Scholar 

  12. Crook, A.: A study of some impacts between metal bodies by a piezoelectric method. Proc. Royal. Soc. A. Math. Phys. Eng. Sci. 212(1110), 377–390 (1952)

    ADS  Google Scholar 

  13. Džiugys, A., Peters, B.: An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers. Granul. Matter 3(4), 231–266 (2001)

    Article  Google Scholar 

  14. Antonyuk, S., Heinrich, S., Tomas, J., Deen, N.G., Van Buijtenen, M.S., Kuipers, J.: Energy absorption during compression and impact of dry elastic-plastic spherical granules. Granul. Matter 12(1), 15–47 (2010)

    Article  MATH  Google Scholar 

  15. Johnson, K.L.: Contact Mech. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  16. Brake, M.R.: An analytical elastic-plastic contact model with strain hardening and frictional effects for normal and oblique impacts. Int. J. Solids Struct. 62, 104–123 (2015)

    Article  Google Scholar 

  17. Xiong, X., Kikuuwe, R., Yamamoto, M.: A multiscale friction model described by continuous differential equations. Tribol. Lett. 51, 513–523 (2013)

    Article  Google Scholar 

  18. Bastien, J., Lamarque, C.H.: Persoz’ gephyroidal model model described by a maximal monotone differential inclusion. Arch. Appl. Mechanics 78(5), 393–407 (2008)

    Article  ADS  MATH  Google Scholar 

  19. Bastien, J., Michon, G., Manin, L., Dufour, R.: An analysis of the modified Dahl and Masing models: application to a belt tensioner. J. Sound Vib. 302, 841–864 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Maugis, D.: Contact, Adhesion and Rupture of Elastic Solids. Solid-State Sciences. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  21. Stronge, W.J.: Rigid body collision with friction. Proc. Royal Soc. Lond. A 431(1881), 169–181 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Stronge, W.J.: Friction in collisions: Resolution of a paradox. J. Appl. Phys. 69(2), 610–612 (1991)

    Article  ADS  Google Scholar 

  23. Stronge, W.J.: Smooth dynamics of oblique impacts with friction. Int. J. Impact Eng. 51, 36–49 (2013)

    Article  Google Scholar 

  24. Stronge, W.J.: Energetically consistent calculations for oblique impacts in unbalanced systems with friction. ASME J. Appl. Mech. 82(8), 081003 (2015)

    Article  ADS  Google Scholar 

  25. Simon, R.: The development of a mathematical tool for evaluating golf club performance. Proceedings of ASME Design Engineering Congress, New York City, USA (1967)

  26. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibro-impact. ASME J. Appl. Mech. 42(2), 440–445 (1975)

    Article  ADS  Google Scholar 

  27. Kuwabara, G., Kono, K.: Restitution in a collision between two spheres. Japan. J. Appl. Phys. 26(8), 1230–1233 (1987)

    Article  ADS  Google Scholar 

  28. Falcon, E., Laroche, C., Fauve, S., Coste, C.: Behavior of one inelastic ball bouncing repeatedly off the ground. Eur. Phys. J. B 3, 45–57 (1998)

    Article  ADS  Google Scholar 

  29. Shi, P.: The restitution coefficient for a linear elastic rod. Math. Comput. Modelling 28(4–8), 427–435 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, Y., Xiang, D., Wang, X., Jiang, L., Wei, Y.: A contact force model considering constant external forces for impact analysis in multibody dynamics. Multibody Sys. Dyn. 44(4), 397–419 (2018)

    Article  MathSciNet  Google Scholar 

  31. Carvalho, A.S., Martins, J.M.: Exact restitution and generalizations for the Hunt-Crossley contact model. Mech. Mach. Theory 139, 174–194 (2019)

    Article  Google Scholar 

  32. Almazán, L., Serero, D., Salueña, C., Pöschel, T.: Energy decay in a granular gas collapse. New J. Phys. 19(1), 013001 (2017)

    Article  ADS  Google Scholar 

  33. Volfson, D., Meerson, B., Tsimring, L.S.: Thermal collapse of a granular gas under gravity. Phys. Rev. E 73(6), 061305061305 (2006)

    Article  ADS  Google Scholar 

  34. Schwager, T., Pöschel, T.: Coefficient of normal restitution of viscous particles and cooling rate of granular gases. Phys. Rev. E 57(1), 650–654 (1998)

    Article  ADS  Google Scholar 

  35. Ramirez, R., Pöschel, T., Brilliantov, N.V., Schwager, T.: Coefficient of restitution of colliding viscoelastic spheres. Phys. Rev. E 60(4), 4465–4472 (1999)

    Article  ADS  Google Scholar 

  36. Müller, P., Pöschel, T.: Collision of viscoelastic spheres: compact expressions for the coefficient of normal restitution. Physical Review E 84(2) (2011)

  37. Schwager, T., Pöschel, T.: Coefficient of restitution for viscoelastic spheres: The effect of delayed recovery. Phys. Rev. E 78(5), 051304 (2008)

    Article  ADS  Google Scholar 

  38. Brilliantov, N.V., Spahn, F., Hertzsch, J.M., Pöschel, T.: The collision of particles in granular systems. Phys. A 231, 417–424 (1996)

    Article  Google Scholar 

  39. Brilliantov, N.V., Spahn, F., Hertzsch, J.M., Pöschel, T.: Model for collisions in granular gases. Phys. Rev. E 53(5), 5382–5392 (1996)

    Article  ADS  Google Scholar 

  40. Brilliantov, N.V., Pimenova, A.V., Goldobin, D.S.: A dissipative force between colliding viscoelastic bodies: Rigorous approach. EPL (Europhysics Letters) 109(1) (2015)

  41. Chatterjee, A., James, G., Brogliato, B.: Approximate analytical coefficient of restitution formulation for single bead impact with external load, using nonlinear visco-elastic models. Research Report hal-03462750, INRIA (December 2021). https://hal.inria.fr/hal-03462750

  42. James, G.: Traveling fronts in dissipative granular chains and nonlinear lattices. Nonlinearity 34(3), 1758 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. James, G., Vorotnikov, K., Brogliato, B.: Kuwabara-Kono numerical dissipation: a new method to simulate granular matter. IMA J. Appl. Math. 85(1), 27–66 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. King, H., White, R., Maxwell, I., Menon, N.: Inelastic impact of a sphere on a massive plane: Nonmonotonic velocity-dependence of the restitution coefficient. EPL (Euro. phys. Lett.) 93(1), 14002 (2011)

    Article  ADS  Google Scholar 

  45. Grasselli, Y., Bossis, G., Goutallier, G.: Velocity-dependent restitution coefficient and granular cooling in microgravity. EPL (Euro. phys. Lett.) 86(6), 60007 (2009)

    Article  ADS  Google Scholar 

  46. Sorace, C., Louge, M., Crozier, M., Law, V.: High apparent adhesion energy in the breakdown of normal restitution for binary impacts of small spheres at low speed. Mech. Res. Commun. 36(3), 364–368 (2009)

    Article  MATH  Google Scholar 

  47. Falcon, E.: Comportements dynamiques associés au contact de Hertz : processus collectifs de collision et propagation d’ondes solitaires dans les milieux granulaires. PhD thesis, Université Claude Bernard Lyon I (1997)

  48. Zhao, Z., Liu, C., Brogliato, B.: Energy dissipation and dispersion effects in granular media. Phys. Rev. E 78(3), 031307 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  49. Chatterjee, A., James, G., Brogliato, B.: Approx-ViscoElastic-CoR. GitHub (2021). https://github.com/ChattAbhi/Approx-ViscoElastic-CoR.git/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume James.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A\({\mathcal {O}}(\gamma )\) expansion of the squared CoR and large \(\tilde{g}\) limit

In this appendix we examine the \({\mathcal {O}}(\gamma )\) expansion (10) of the squared CoR obtained for \(\gamma \ll 1\) :

$$\begin{aligned} e^2 = 1 - 2 \gamma \beta \mathcal {I}_0(\tilde{g}) + \mathrm{H.O.T.}, \end{aligned}$$
(A1)

where

$$\begin{aligned} \mathcal {I}_0(\tilde{g}) = \int _0^{T_0} {\left( \frac{du_0}{d \tau } \right) }^2 u_0^{\beta - 1} d \tau \end{aligned}$$
(A2)

and \(T_0 >0\) corresponds to the end of impact in the absence of dissipation (\(u_0(T_0)=0\), \(\frac{du_0}{d \tau }(T_0)=-1\)). We shall simplify the integral coefficient (A2) for arbitrary \(\tilde{g}\) and investigate the large \(\tilde{g}\) limit.

Due to the symmetry \(u_0 \left( \frac{T_0}{2} + \tau \right) = u_0 \left( \frac{T_0}{2} - \tau \right)\) about the maximal compression in the nondissipative case, we can rewrite the integral in (A2) as

$$\begin{aligned} \mathcal {I}_0(\tilde{g}) = 2 \int _0^{\frac{T_0}{2}} {\left( \frac{du_0}{d \tau } \right) }^2 u_0^{\beta - 1} d \tau . \end{aligned}$$
(A3)

Multiplying (9) by \(\frac{du_0}{d \tau }\) and integrating from \(\tau = 0\) yields the energy conservation equation

$$\begin{aligned} \frac{1}{2} \left[ {\left( \frac{du_0}{d \tau } \right) }^2 - 1 \right] + \frac{{u_0}^{\alpha + 1}}{\alpha +1 } = \tilde{g} u_0 , \end{aligned}$$

which can be used to solve for \(\frac{d u_0}{d \tau }\) in the compression phase,

$$\begin{aligned} \frac{du_0}{d \tau } = {\left[ 1 + 2 \left( \tilde{g} u_0 - \frac{{u_0}^{\alpha +1}}{\alpha + 1} \right) \right] }^{\frac{1}{2}}. \end{aligned}$$
(A4)

At the maximum compression one has \(\frac{du_0}{d \tau }(T_0/2) = 0\), therefore the maximal deformation \(u_M=u_0(T_0/2)\) satisfies

$$\begin{aligned} \frac{1}{\alpha + 1} {u_M}^{\alpha + 1} = \tilde{g} u_M + \frac{1}{2}. \end{aligned}$$
(A5)

Considering the integral in (A3) and changing integration variable (\(\tau \rightarrow u_0\)), we get using (A4)

$$\begin{aligned} \mathcal {I}_0(\tilde{g}) = 2\int _0^{u_M} {\left[ 1 + 2 \left( \tilde{g} u_0 - \frac{{u_0}^{\alpha +1}}{\alpha + 1} \right) \right] }^{\frac{1}{2}} u_0^{\beta - 1} d u_0 . \end{aligned}$$
(A6)

Let us now investigate the large \(\tilde{g}\) limit. Equation (A5) yields

$$\begin{aligned} \frac{1}{\alpha + 1} {u_M}^{\alpha + 1} \approx \tilde{g} u_M \end{aligned}$$

which suggests to introduce the new unknown y defined by

$$\begin{aligned} u_M = \tilde{g}^{\frac{1}{\alpha }} y . \end{aligned}$$
(A7)

Substituting \(u_M\) from (A7) back into (A5), we obtain

$$\begin{aligned} \frac{1}{\alpha + 1} y^{\alpha + 1} - y = \frac{\epsilon }{2}, \end{aligned}$$
(A8)

where \(\epsilon = \frac{1}{{\tilde{g}}^{1 + \frac{1}{\alpha }}}\) is a small parameter when \(\tilde{g}\gg 1\). This yields

$$\begin{aligned} y= & {} {(1 + \alpha )}^{\frac{1}{\alpha }} + {\mathcal {O}}(\epsilon ), \\ u_M= & {} {\left[ \tilde{g} (1+\alpha ) \right] }^{\frac{1}{\alpha }} + {\mathcal {O}}\left( \frac{1}{\tilde{g}}\right) . \end{aligned}$$

In order to study the behavior of integral (A6) for \(\tilde{g}\gg 1\), we perform the change of variable \(u_0 = {\tilde{g}}^{\frac{1}{\alpha }} y_0\), which leads to

$$\begin{aligned} \begin{array}{ccl} \mathcal {I}_0(\tilde{g}) &{} = &{} \displaystyle 2 {\tilde{g}}^{\frac{\beta }{\alpha } + \frac{1}{2 \alpha } + \frac{1}{2}} \\[12pt] &{} &{} \displaystyle \times \int _0^y {\left[ \epsilon + 2 \left( y_0 - \frac{y_0^{\alpha + 1}}{\alpha + 1} \right) \right] }^{\frac{1}{2}} {y_0}^{\beta - 1} d y_0 . \end{array} \end{aligned}$$
(A9)

When \(\epsilon \approx 0\), the integral (A9) can be approximated as

$$\begin{aligned} \begin{array}{ccl} \mathcal {I}_0(\tilde{g}) &{} = &{} \displaystyle 2\sqrt{2} {\tilde{g}}^{\frac{\beta }{\alpha } + \frac{1}{2 \alpha } + \frac{1}{2}} \\[12pt] &{} &{} \displaystyle \times \int _0^{{\left( 1 + \alpha \right) }^{\frac{1}{\alpha }}} \left( 1 - \frac{y_0^{\alpha }}{\alpha + 1} \right) ^{\frac{1}{2}} {y_0}^{\beta - \frac{1}{2}} d y_0 \\ &{} &{} + \mathrm{H.O.T.} \end{array} \end{aligned}$$
(A10)

Now we can consider another change of variable \(t=\frac{{y_0}^{\alpha }}{ \alpha + 1 }\), which yields using (19)

$$\begin{aligned} \mathcal {I}_0(\tilde{g}) = \frac{2\sqrt{2}}{\alpha } {(\alpha + 1)}^{\frac{\beta + 1/2}{\alpha }} {\tilde{g}}^{\frac{2 \beta + \alpha + 1}{2 \alpha }} \, \mathrm{B}\;\, \left( \frac{\beta + \frac{1}{2}}{\alpha }, \frac{3}{2} \right) . \end{aligned}$$
(A11)

Thus, substituting (A11) into (A1) yields the large \(\tilde{g}\) limit of the CoR expansion

$$\begin{aligned} e^2 \approx 1 - 2 \gamma C \tilde{g}^{\left( \frac{\beta }{\alpha } + \frac{1}{2 \alpha } + \frac{1}{2} \right) }, \end{aligned}$$
(A12)

where

$$\begin{aligned} C = 2\sqrt{2} \frac{\beta }{\alpha } {\left( \alpha + 1 \right) }^{\left( \frac{\beta }{\alpha } + \frac{1}{2 \alpha } \right) } \mathrm{B}\; \left( \frac{\beta + \frac{1}{2}}{\alpha }, \frac{3}{2} \right) . \end{aligned}$$

Appendix B Proof of Proposition 1

In this appendix we establish the \({\mathcal {O}}(\gamma ^2)\) approximation of the CoR e stated in Proposition 1.

We start from the expansion (35) of \(e^2\), where the integral \(\frac{\partial \mathcal {I}}{\partial \gamma } (\gamma ,\tilde{g})\) given in (34) needs to be computed at \(\gamma =0\). This step quite technical, therefore we shall summarize the main steps of the computation and refer to the technical report [41] for details.

Let us denote by \(u_0\) the solution of (30)-(31) in the non-dissipative case \(\gamma = 0\) and consider the corresponding impact duration \(T_0\). In (35), we need to evaluate \(\frac{\partial \mathcal {I}}{\partial \gamma }\) for \(\gamma =0\), so using (34) we can write

$$\begin{aligned} \begin{array}{ccl} \displaystyle \frac{\partial \mathcal {I}}{\partial \gamma }(0,\tilde{g}) &{} = &{} \displaystyle \frac{1}{\beta } \int _0^{T_0} u^0_{\gamma } \left[ (\beta + \alpha ) u_0^{\beta + \alpha -1} \right. \\[12pt] &{} &{} \displaystyle \left. - \tilde{g} \beta u_0^{\beta - 1} \right] d \tau , \end{array} \end{aligned}$$
(B13)

where we note \(u^0_{\gamma }(\tau ) = \frac{\partial u}{\partial \gamma }(0,\tau )\). We need to compute \(u^0_{\gamma }\) to further evaluate (B13). Differentiating (30)-(31) with respect to \(\gamma\) at \(\gamma =0\), we obtain the linear non-homogeneous problem

$$\begin{aligned} \begin{array}{c} \displaystyle \frac{d^2 u^0_{\gamma }}{d \tau ^2} + \alpha u_0^{\alpha - 1} u^0_{\gamma } + \frac{d}{d \tau } (u_0^{\beta }) = 0, \end{array} \end{aligned}$$
(B14)

with

$$\begin{aligned} \begin{array}{ccc} \displaystyle u^0_{\gamma } (0) = 0& \mathrm{and}& \displaystyle \frac{d u^0_{\gamma }}{d \tau } (0) = 0 . \end{array} \end{aligned}$$

This problem can be solved using the variation of constants formula. One obtains after lengthy but straightforward computations (see the technical report [41]):

$$\begin{aligned} u^0_{\gamma } = - u_{0}^{\prime } \int _0^{\tau } \frac{d }{d s}(u_0^{\beta }) u_1 ds + u_1 \int _0^{\tau } \frac{d }{d s}(u_0^{\beta }) u_{0}^{\prime } ds , \end{aligned}$$
(B15)

where \(u_{0}^{\prime }=\frac{d u_0}{d \tau }\), \(u_1\) is the solution to

$$\begin{aligned}&\frac{d^2 u_1}{d \tau ^2} + \alpha u_0^{\alpha -1} u_1 = 0, \end{aligned}$$
(B16)
$$\begin{aligned}&u_1 (T_0 /2) = (\tilde{g} - u_M^{\alpha })^{-1}, \quad \frac{d u_1}{d \tau } (T_0 /2) = 0, \end{aligned}$$
(B17)

and \(u_M = u_0 (\frac{T_0}{2})\) satisfies (13) (hence \(\tilde{g} - u_M^{\alpha }<0\) in (B17)). Note that \(u_{0}^{\prime }\) and \(u_1\) are independent solutions to the homogeneous problem (B16).

Substitution of (B15) in (B13) yields after lengthy algebraic manipulations (see [41])

$$\begin{aligned} \frac{\partial \mathcal {I}}{\partial \gamma }(0,\tilde{g}) = - \beta \, \mathcal {I}_0 \, \mathcal {Q}_0 , \end{aligned}$$
(B18)

where \(\mathcal {I}_0\) is given by (A3) and

$$\begin{aligned} \mathcal {Q}_0= & {} -\beta ^{-1} \int _0^{T_0/2}{ u_1 u_0^{\beta -1} [ (\beta + \alpha ) u_0^{\alpha } - \tilde{g} \beta ] d\tau } \\= & {} \beta ^{-1}\int _0^{T_0/2}{ \frac{u_1}{u_0^\prime }\, \frac{d}{d\tau } ( u_0^\beta u_0^{\prime \prime } ) \, d\tau } \end{aligned}$$

(the second identity follows from (9)). This integral can be further simplified using the fact that

$$\begin{aligned} \frac{d }{d \tau }\left( \frac{u_1}{ u_0^\prime } \right) = -\frac{1}{ { \left( u_0^\prime \right) }^2 } \end{aligned}$$
(B19)

and integrating twice by parts (see [41]), which yields finally

$$\begin{aligned} \mathcal {Q}_0 = \int _0^{T_0/2}{u_0^{\beta -1} d\tau } . \end{aligned}$$
(B20)

This integral can be rewritten in the form (40) by changing the integration variable (\(\tau \rightarrow u_0\)) and using (A4).

Now that \(\frac{\partial \mathcal {I}}{\partial \gamma }(0,\tilde{g})\) has been computed with (B18)-(B20), substitution into (35) yields the squared restitution coefficient

$$\begin{aligned} e^2 = 1 - 2\beta \mathcal {I}_0 \gamma + 2 \beta ^2 \mathcal {I}_0 \mathcal {Q}_0 \gamma ^2 + o(\gamma ^2), \end{aligned}$$
(B21)

where \(\mathcal {I}_0, \mathcal {Q}_0 >0\) are given in (A3), (B20). Dropping the \(o(\gamma ^2)\) remainder in (B21) and taking the square root, one obtains the following approximation of the CoR

$$\begin{aligned} e \approx \left( 1 - 2\beta \mathcal {I}_0 \gamma + 2 \beta ^2 \mathcal {I}_0 \mathcal {Q}_0 \gamma ^2 \right) ^{1/2} . \end{aligned}$$
(B22)

For this approximation to be meaningful, it is necessary to have \(1--2\beta \mathcal {I}_0 \gamma + 2 \beta ^2 \mathcal {I}_0 \mathcal {Q}_0 \gamma ^2 \ge 0\), and we shall set \(e=0\) if this condition is not satisfied. This leads us to an approximation \(e\approx e_+\) valid for \(\gamma \approx 0\), where

$$\begin{aligned} e_+ = \max { \left( 1 - 2\beta \mathcal {I}_0 \gamma + 2 \beta ^2 \mathcal {I}_0 \mathcal {Q}_0 \gamma ^2,0 \right) }^{1/2} . \end{aligned}$$
(B23)

Moreover, expanding the right side of (B22) at order 2 in \(\gamma\) yields the simplified approximation

$$\begin{aligned} e \approx 1 - \beta \mathcal {I}_0 \gamma + \beta ^2 \mathcal {I}_0 ( \mathcal {Q}_0 - \frac{1}{2}\mathcal {I}_0 ) \gamma ^2 \end{aligned}$$
(B24)

for \(\gamma \approx 0\). We thus have another approximation \(e\approx e_s\) at hand, given by

$$\begin{aligned} e_s = \max {\left( 1 - \beta \mathcal {I}_0 \gamma + \beta ^2 \mathcal {I}_0 ( \mathcal {Q}_0 - \frac{1}{2}\mathcal {I}_0 ) \gamma ^2 ,0 \right) } . \end{aligned}$$
(B25)

In numerical computations we observe that approximations (B22) and (B24) tend to overestimate the CoR, hence it is interesting to choose the smallest approximation. This leads us to consider

$$\begin{aligned} e \approx \min {(e_+,e_s)}. \end{aligned}$$
(B26)

In particular, if \(1--2\beta \mathcal {I}_0 \gamma + 2 \beta ^2 \mathcal {I}_0 \mathcal {Q}_0 \gamma ^2 \ge 0\) and (B24) is positive, (B26) corresponds to \(e \approx e_s\) if

$$\begin{aligned} \big ( \mathcal {Q}_0 - \frac{\mathcal {I}_0}{2} \big ) \, \left( \, \beta {\big ( \mathcal {Q}_0 - \frac{\mathcal {I}_0}{2} \big )} \gamma - 2 \, \right) \le 0 \end{aligned}$$

and \(e \approx e_+\) otherwise.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, A., James, G. & Brogliato, B. Approximate coefficient of restitution for nonlinear viscoelastic contact with external load. Granular Matter 24, 124 (2022). https://doi.org/10.1007/s10035-022-01284-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-022-01284-w

Keywords

Navigation