Skip to main content
Log in

Calibration of DEM macro and micro parameters via XGBoost method

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

To solve the complicated macro and micro parameter calibration problem in the discrete element method (DEM) simulation of rock mechanics, macro parameter prediction and micro parameter inversion model are established based on the XGBoost model. Firstly, a parameter database for the uniaxial compressive test in DEM has been established by literature research and numerical simulation. The critical parameters in the uniaxial compressive test have been chosen with data and theoretical analysis. The influence of the number of selected parameters on accuracy has also been discussed. Then, the prediction model and inversion model have been established which can complete the calibration quickly. The two models were tested by test samples, and the accuracy of the model can generally reach more than 90%. This research has great significance for improving the efficiency of discrete element modeling.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cundall, P.A.: A computer model for simulating progressive, large-scale movement in blocky rock system. In: Proceedings of the International Symposium on Rock Mechanics, France, 1971 (1971)

  2. Campbell, C.S., Brennen, C.E.: Computer simulation of granular shear flows. J. Fluid Mech. 151, 167–188 (1985)

    Article  ADS  Google Scholar 

  3. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  4. Walton, O.R.: Particle-Dynamics Modeling of Geological Materials. University of California, Davis, Davis (1981)

    Google Scholar 

  5. Bahaaddini, M., Hagan, P.C., Mitra, R., Khosravi, M.H.: Experimental and numerical study of asperity degradation in the direct shear test. Eng. Geol. 204, 41–52 (2016)

    Article  Google Scholar 

  6. Bock, S., Prusek, S.: Numerical study of pressure on dams in a backfilled mining shaft based on PFC3D code. Comput. Geotech. 66, 230–244 (2015)

    Article  Google Scholar 

  7. Haeri, H.: Experimental and numerical study on crack propagation in pre-cracked beam specimens under three-point bending. J. Cent. South Univ. 23, 430–439 (2016)

    Article  Google Scholar 

  8. Khazaei, C., Hazzard, J., Chalaturnyk, R.: Damage quantification of intact rocks using acoustic emission energies recorded during uniaxial compression test and discrete element modeling. Comput. Geotech. 67, 94–102 (2015)

    Article  Google Scholar 

  9. Lin, C.-H., Lin, M.-L.: Evolution of the large landslide induced by Typhoon Morakot: a case study in the Butangbunasi River, southern Taiwan using the discrete element method. Eng. Geol. 197, 172–187 (2015)

    Article  Google Scholar 

  10. Oetomo, J.J., Vincens, E., Dedecker, F., Morel, J.-C.: Modeling the 2D behavior of dry-stone retaining walls by a fully discrete element method. Int. J. Numer. Anal. Met. 40, 1099–1120 (2016)

    Article  Google Scholar 

  11. Oliaei, M., Manafi, E.: Static analysis of interaction between twin-tunnels using discrete element method (DEM). Sci. Iran. 22, 1964 (2015)

    Google Scholar 

  12. Turichshev, A., Hadjigeorgiou, J.: Experimental and numerical investigations into the strength of intact veined rock. Rock Mech. Rock Eng. 48, 1897–1912 (2015)

    Article  ADS  Google Scholar 

  13. Wang, Z., Jacobs, F., Ziegler, M.: Experimental and DEM investigation of geogrid–soil interaction under pullout loads. Geotext. Geomembr. 44, 230–246 (2016)

    Article  Google Scholar 

  14. Yang, S.-Q., Tian, W.-L., Huang, Y.-H., Ranjith, P.G., Ju, Y.: An experimental and numerical study on cracking behavior of brittle sandstone containing two non-coplanar fissures under uniaxial compression. Rock Mech. Rock Eng. 49, 1497–1515 (2016)

    Article  ADS  Google Scholar 

  15. Zhou, M., Song, E.: A random virtual crack DEM model for creep behavior of rockfill based on the subcritical crack propagation theory. Acta Geotech. 11, 827–847 (2016)

    Article  Google Scholar 

  16. Liao, C.-L., Chan, T.-C.: A generalized constitutive relation for a randomly packed particle assembly. Comput. Geotech. 20, 345–363 (1997). https://doi.org/10.1016/S0266-352X(97)00010-4

    Article  Google Scholar 

  17. Oñate, E., Zárate, F., Miquel, J., Santasusana, M., Celigueta, M.A., Arrufat, F., Gandikota, R., Valiullin, K., Ring, L.: A local constitutive model for the discrete element method. Application to geomaterials and concrete. Comput. Part. Mech. 2, 139–160 (2015). https://doi.org/10.1007/s40571-015-0044-9

    Article  Google Scholar 

  18. Fakhimi, A., Villegas, T.: Application of dimensional analysis in calibration of a discrete element model for rock deformation and fracture. Rock Mech. Rock Eng. 40, 193 (2006). https://doi.org/10.1007/s00603-006-0095-6

    Article  ADS  Google Scholar 

  19. Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. 41, 1329–1364 (2004). https://doi.org/10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  20. Wang, M., Cao, P.: Calibrating the micromechanical parameters of the PFC2D (3D) models using the improved simulated annealing algorithm. Math. Probl. Eng. 2017, 1–11 (2017). https://doi.org/10.1155/2017/6401835

    Article  Google Scholar 

  21. Guo, J., Xu, G., Jing, H., Kuang, T.: Fast determination of meso-level mechanical parameters of PFC models. Int. J. Rock Mech. Min. 23, 157–162 (2013). https://doi.org/10.1016/j.ijmst.2013.03.007

    Article  Google Scholar 

  22. Yoon, J.: Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int. J. Rock Mech. Min. 44, 871–889 (2007). https://doi.org/10.1016/j.ijrmms.2007.01.004

    Article  Google Scholar 

  23. Deng, S., Zheng, Y., Feng, L., Zhu, P., Ni, Y.: Application of design of experiments in microscopic parameter calibration for hard rocks of PFC3D model. Chin. J. Geotech. Eng. 41, 655–664 (2019)

    Google Scholar 

  24. Xu, H., Dong, W., Hu, B.: Application of DEM Particle Flow Code in Hydraulic and Geotechnical Engineering. Science Press, Beijing (2017)

    Google Scholar 

  25. Cheng, Y., Yang, W., He, D.: Relationship of rock microscopic parameters with the elastic modulus and strength. J. Vibroeng. 21, 901–910 (2019). https://doi.org/10.21595/jve.2018.19849

    Article  Google Scholar 

  26. Wang, Y., Tonon, F.: Calibration of a discrete element model for intact rock up to its peak strength. Int. J. Numer. Anal. Met. 34, 447–469 (2010)

    Article  MATH  Google Scholar 

  27. Xiao-tao, Y.I.N., Chun-guang, L.I., Shui-lin, W.: Study on relationship between micro-parameters and macro-parameters of rock and soil material. Chin. J. Solid Mech. 32, 343–351 (2011)

    Google Scholar 

  28. Zou, Q., Lin, B.: Modeling the relationship between macro- and meso-parameters of coal using a combined optimization method. Environ. Earth Sci. 76, 479 (2017). https://doi.org/10.1007/s12665-017-6816-1

    Article  Google Scholar 

  29. Plassiard, J.-P., Belheine, N., Donze, F.-V.: A spherical discrete element model: calibration procedure and incremental response. Granul. Matter 11, 293–306 (2009). https://doi.org/10.1007/s10035-009-0130-x

    Article  MATH  Google Scholar 

  30. Fuchs, R., Weinhart, T., Meyer, J., Zhuang, H., Staedler, T., Jiang, X., Luding, S.: Rolling, sliding and torsion of micron-sized silica particles: experimental, numerical and theoretical analysis. Granul. Matter 16, 281–297 (2014). https://doi.org/10.1007/s10035-014-0481-9

    Article  Google Scholar 

  31. Hanley, K.J., O’Sullivan, C., Oliveira, J.C., Cronin, K., Byrne, E.P.: Application of Taguchi methods to DEM calibration of bonded agglomerates. Powder Technol. 210, 230–240 (2011). https://doi.org/10.1016/j.powtec.2011.03.023

    Article  Google Scholar 

  32. Cheng, H., Shuku, T., Thoeni, K., Yamamoto, H.: Probabilistic calibration of discrete element simulations using the sequential quasi-Monte Carlo filter. Granul. Matter 20, 11 (2018). https://doi.org/10.1007/s10035-017-0781-y

    Article  Google Scholar 

  33. Cheng, H., Shuku, T., Thoeni, K., Tempone, P., Luding, S., Magnanimo, V.: An iterative Bayesian filtering framework for fast and automated calibration of DEM models. Comput. Methods Appl. Mech. 350, 268–294 (2019). https://doi.org/10.1016/j.cma.2019.01.027

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Tawadrous, A.S., DeGagné, D., Pierce, M., Mas Ivars, D., et al.: Prediction of uniaxial compression PFC3D model micro-properties using artificial neural networks. Int. J. Numer. Anal. Methods Geomech. 33, 1953–1962 (2009). https://doi.org/10.1002/nag.809

    Article  MATH  Google Scholar 

  35. Zhou, Y., Wu, S., Jiao, J., Zhang, X.: Research on mesomechanical parameters of rock and soil mass based on BP neural network. Rock Soil. Mech. 32, 3821–3826 (2011)

    Google Scholar 

  36. Sun, M., Tang, H., Hu, X., Ge, Y., Lu, S.: Microparameter prediction for a triaxial compression PFC3D model of rock using full factorial designs and artificial neural networks. Geotech. Geol. Eng. 11, 1249–1259 (2013)

    Article  Google Scholar 

  37. Zhai, S., Zhan, J., Ba, Y., Chen, J., Li, Y., Li, Z.: PFC model parameter calibration using uniform experimental design and a deep learning network. IOP Conf. Ser. Earth Environ. Sci. 304, 032062 (2019). https://doi.org/10.1088/1755-1315/304/3/032062

    Article  Google Scholar 

  38. Ben Turkia, S., Wilke, D.N., Pizette, P., Govender, N., Abriak, N.-E.: Benefits of virtual calibration for discrete element parameter estimation from bulk experiments. Granul. Matter 21, 110 (2019). https://doi.org/10.1007/s10035-019-0962-y

    Article  Google Scholar 

  39. Zeng, D., Yao, J., Huo, J.: Inversion of rock meso-mechanical parameters based on parallel particle swarm optimization (PSO) algorithm. J. Xi’an Shiyou Univ. Nat. Sci. Ed. 30, 27-32+5 (2015)

    Google Scholar 

  40. Cho, N., Martin, C.D., Sego, D.C.: A clumped particle model for rock. Int. J. Rock Mech. Min. 44, 997–1010 (2007). https://doi.org/10.1016/j.ijrmms.2007.02.002

    Article  Google Scholar 

  41. Jiang, M.: New paradigm for modern soil mechanics: geomechanics from micro to macro. Chin. J. Geotech. Eng. 41, 195–254 (2019)

    Google Scholar 

  42. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016). https://doi.org/10.1145/2939672.2939785

  43. Wang, X., Zhang, L., Li, J., Sun, Y., Tian, J., Han, R.: Study on XGBoost improved method based on genetic algorithm and random forest. Comput. Sci. 454–458+463 (2020)

  44. Chen, H., Wang, G., Xiao, C., Guo, P., Huang, J., Chen, H.: Research on intrusion detection model based on DBN-XGBDT. Comput. Eng. Appl. 56, 83–91 (2020)

    Google Scholar 

  45. Xia, L., Zeng, Y., Zhang, S.: Influence of meso-mechanical parameters of bedding plane on strength characteristics of layered rock mass. J. Yangtze River Sci. Res. Inst. 33, 68–75 (2016)

    Google Scholar 

  46. Cui, J., Liang, Q.: Research on the relationship between meso and macroscopic mechanical parameters of rock based on PFC3D model. Bull. Sci. Technol. 35, 8–15 (2019)

    Google Scholar 

  47. Duan, K., Kwok, C.Y., Tham, L.G.: Micromechanical analysis of the failure process of brittle rock: micromechanical analysis brittle rock. Int. J. Numer. Anal. Methods Geomech. 39, 618–634 (2015). https://doi.org/10.1002/nag.2329

    Article  Google Scholar 

  48. Zhang, X.-P., Wong, L.N.Y.: Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach. Rock Mech. Rock Eng. 45, 711–737 (2012). https://doi.org/10.1007/s00603-011-0176-z

    Article  ADS  Google Scholar 

  49. He, P., Kulatilake, P.H.S.W., Yang, X., Liu, D., He, M.: Detailed comparison of nine intact rock failure criteria using polyaxial intact coal strength data obtained through PFC3D simulations. Acta Geotech. 13, 419–445 (2018). https://doi.org/10.1007/s11440-017-0566-9

    Article  Google Scholar 

  50. Li, Z., Rao, Q.: Quantitative determination of PFC3D microscopic parameters. J. Cent. South Univ. 28, 911–925 (2021). https://doi.org/10.1007/s11771-021-4653-6

    Article  Google Scholar 

  51. Haeri, H., Sarfarazi, V.: PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test. Struct. Eng. Mech. 68, 497–505 (2018). https://doi.org/10.12989/sem.2018.68.4.497

    Article  Google Scholar 

  52. Ding, X., Zhang, L.: Simulation of rock fracturing using particle flow modeling: phase I—model development and calibration. In: 45th US Rock Mechanics/Geomechanics Symposium. OnePetro (2011)

  53. Fan, X., Kulatilake, P.H.S.W., Chen, X., Cao, P.: Crack initiation stress and strain of jointed rock containing multi-cracks under uniaxial compressive loading: a particle flow code approach. J. Cent. South Univ. 22, 638–645 (2015). https://doi.org/10.1007/s11771-015-2565-z

    Article  Google Scholar 

  54. Yue, K., Olson, J.E., Schultz, R.A.: Calibration of stiffness and strength for layered rocks. In: 50th U.S. Rock Mechanics/Geomechanics Symposium. OnePetro (2016)

  55. Yang, B., Jiao, Y., Lei, S.: A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Eng. Comput. 23, 607–631 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (51991391, U1806226, 52021005), and the Tang Scholar Program of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongqing Zhou or Jinglong Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Bai, S., Chu, K. et al. Calibration of DEM macro and micro parameters via XGBoost method. Granular Matter 24, 106 (2022). https://doi.org/10.1007/s10035-022-01264-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-022-01264-0

Keywords

Navigation