Skip to main content
Log in

A study of wave propagation and stiffness anisotropy in anisotropically loaded granular material-synthetic fiber binary systems

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The influence of polypropylene fiber inclusion on the wave propagation parameters and stiffness anisotropy of granular materials was examined through vertically and laterally positioned bender elements, by which, shear wave velocities were measured leading to the quantification of elastic stiffness Gmax(vh), Gmax(hv) and Gmax(hh) (the first subscript corresponds to the direction of wave propagation and the second subscript corresponds to the direction of particle perturbation as v: vertical and h: horizontal). Various stress paths were considered to comprehensively study stiffness anisotropy of the specimens and grain-scale laboratory tests were additionally performed to provide, partly, some multi-scale insights into the mechanisms of wave propagation of the sand-fiber granular composites. For the back-calculation of elastic stiffness from the wave propagation experiments, Biot’s theory was adopted, in which case an equivalent density was used to interpret the high-frequency test results taking into account the relative movement of the solid and fluid phases, which approach provided much better convergency of the results from bender elements and resonant column tests. In this case we assumed that the solid skeleton is composed of the sand particles and the fibers. The test results indicated that when subjected to isotropic stress state, the presence of fibers led to a decrease of Gmax(vh) and Gmax(hv) but an increase of Gmax(hh). The extent of Gmax(hh) increase was dependent on the characteristics of the host sand and could be attributed to the structural anisotropy with preferred horizontal orientation of the fibers leading to more pronounced development of rigid-soft contacts in the vertical direction. The contribution of the rigid-soft contacts in stiffness reduction could be linked to the microscopic influence of the softer synthetic fibers in reducing the normal contact stiffness and increasing the energy dissipation of the granular system as the grain-scale experiments suggested. When subjected to anisotropic stress state, the stiffness anisotropy was affected by fiber content in a way that with increasing amount of fiber inclusion, the reduction of the stiffness anisotropy became larger. The stiffness anisotropy of the sand or sand-fiber binary system increased with the increase of the stress ratio. Further analysis of the test results revealed that stress induced anisotropy was directly linked to the influence of deviatoric stress on the volumetric strain.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Michałowski, R.L., Zhao, A.: Failure of fiber-reinforced granular soils. J. Geotech. Eng. 122(3), 226–234 (1996)

    Article  Google Scholar 

  2. Michalowski, R.L.: Limit analysis with anisotropic fibre-reinforced soil. Géotechnique 58(6), 489–501 (2008)

    Article  Google Scholar 

  3. Consoli, N.C., Casagrande, M.D.T., Coop, M.R.: Performance of a fibre-reinforced sand at large shear strains. Geotechnique 57(9), 751–756 (2007)

    Article  Google Scholar 

  4. Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M., Zadhoush, A.: A simple review of soil reinforcement by using natural and synthetic fibres. Constr. Build. Mater. 30, 100–116 (2012)

    Article  Google Scholar 

  5. Diambra, A., Ibraim, E., Russell, A.R., Muir Wood, D.: Fibre reinforced sands: from experiments to modelling and beyond. Int. J. Numer. Anal. Meth. Geomech. 37(15), 2427–2455 (2013)

    Article  Google Scholar 

  6. Li, C.L., Zornberg, J.G.: Mobilization of reinforcement forces in fibre-reinforced soil. J. Geotech. Geoenviron. Eng. 139(1), 107–115 (2013)

    Article  Google Scholar 

  7. Mirzababaei, M., Mohamed, M., Arulrajah, A., Horpibulsuk, S., Anggraini, V.: Practical approach to predict the shear strength of fibre-reinforced clay. Geosynth. Int. 25(1), 50–66 (2018)

    Article  Google Scholar 

  8. Al-Refeai, T.O.: Behaviour of granular soils reinforced with discrete randomly oriented inclusions. Geotext. Geomembr. 10(4), 319–333 (1991)

    Article  Google Scholar 

  9. Al-Refeai, T., Al-Suhaibani, A.: Dynamic and static characterization of polypropylene fibre-reinforced dune Sand. Geosynth. Int. 5(5), 443–458 (1998)

    Article  Google Scholar 

  10. Dos Santos, A.P.S., Consoli, N.C., Baudet, B.A.: The mechanics of fibre-reinforced sand. Géotechnique 60(10), 791–799 (2010)

    Article  Google Scholar 

  11. Diambra, A., Ibraim, E., Russell, A.R., Muir Wood, D.: Modelling the undrained response of fibre reinforced sands. Soils Found. 51(4), 625–636 (2011)

    Article  Google Scholar 

  12. Ye, B., Cheng, Z.R., Liu, C., Zhang & Y. D. Lu, P.: Liquefaction resistance of sand reinforced with randomly distributed polypropylene fibres. Geosynth. Int. 24(6), 625–636 (2017)

    Article  Google Scholar 

  13. Ghadr, S.: Effect of grain size on undrained anisotropic behaviour of sand–fibre composite. Transp. Geotech. 22, 100323 (2020)

    Article  Google Scholar 

  14. Ghadr, S., Bahadori, H.: Anisotropic behavior of fiber-reinforced sands. J. Mater. Civ. Eng. 31(11), 04019270 (2019)

    Article  Google Scholar 

  15. Wood, D.M., Diambra, A., Ibraim, E.: Fibres and soils: a route towards modelling of root-soil systems. Soils Found. 56(5), 765–778 (2016)

    Article  Google Scholar 

  16. Zhang, X., Russell, A.R.: Assessing liquefaction resistance of fiber-reinforced sand using a new pore pressure ratio. J. Geotech. Geoenviron. Eng. 146(1), 04019125 (2020)

    Article  Google Scholar 

  17. Heineck, K.S., Coop, M.R., Consoli, N.C.: Effect of microreinforcement of soils from very small to large shear strains. Geotech. Geoenviron. Eng. 131(8), 1024–1033 (2005)

    Article  Google Scholar 

  18. Li, H., Senetakis, K.: Dynamic properties of polypropylene fibre-reinforced silica quarry sand. Soil. Dyn. Earthq. Eng. 100, 224–232 (2017)

    Article  Google Scholar 

  19. Li, M., He, H., Senetakis, K.: Behaviour of carbon fibre-reinforced recycled concrete aggregate. Geosynth. Int. 24(5), 480–490 (2017)

    Article  Google Scholar 

  20. Li, H., Senetakis, K., Khoshghalb, A.: On the small-strain stiffness of polypropylene fibre-sand mixtures. Geosynth. Int. 26(1), 66–80 (2019)

    Article  Google Scholar 

  21. Maher, M.H., Woods, H.D.: Dynamic response of sand reinforced with randomly distributed fibres. J. Geotech. Eng. 116(7), 1116–1131 (1990)

    Article  Google Scholar 

  22. Vettorelo, P.V., Clariá, J.J.: Modeling the fibre addition influence on the small strain shear modulus of sand. Indian Geotech. J. 48(1), 196–204 (2018)

    Article  Google Scholar 

  23. Ishihara, K.: Soil behaviour in earthquake geotechnics. Oxford University Press, Clarendon Press (1996)

    Google Scholar 

  24. Clayton, C.: Stiffness at small strain: research and practice. Géotechnique 61(1), 5–37 (2011)

    Article  Google Scholar 

  25. Cascante, G., Santamarina, C.: Interparticle contact behaviour and wave propagation. J. Geotech. Eng. 122(10), 831–839 (1996)

    Article  Google Scholar 

  26. Gu, X.Q., Yang, J.: A discrete element analysis of elastic properties of granular materials. Granular Matter 15, 139–147 (2013)

    Article  Google Scholar 

  27. Gu, X., Yang, J., Huang, M.: DEM simulations of the small strain stiffness of granular soils: effect of stress ratio. Granular Matter 15, 287–298 (2013)

    Article  Google Scholar 

  28. Otsubo, M., O’Sullivan, C., Hanley, K.J., Sim, W.W.: Influence of packing density and stress on the dynamic response of granular materials. Granular Matter 19, Article Number: 50 (2017)

  29. Hu, T., Van Gorder, R.A.: Wave propagation and pattern formation in two-dimensional hexagonally-packed granular crystals under various configurations. Granular Matter 21, Article Number: 3 (2019)

  30. Wang, C., Zhang, Q., Vavakis, A.F.: Wave transmission in 2D nonlinear granular-solid interfaces, including rotational and frictional effects. Granular Matter 23, Article Number: 21 (2021)

  31. O’Donovan, J., Ibrain, E., O’Sullivan, C., Hamlin, S., Muir Wood, D., Marketos, G.: Micromechanics of seismic wave propagation in granular materials. Granular Matter 18, Article Number: 56 (2016)

  32. Paulick, M., Morgeneyer, M., Kwade, A.: A new method for the determination of particle contact stiffness. Granular Matter 17, 83–93 (2015)

    Article  Google Scholar 

  33. Chung, C.-K., Jang, E.-R., Baek, S.-H., Jung, Y.-H.: How contact stiffness and density determine stress-dependent elastic moduli: a micromechanics approach. Granular Matter 16, 23–39 (2014)

    Article  Google Scholar 

  34. Zhou, Z.H., Wang, H.N., Jiang, M.J.: Elastic constants obtained analytically from microscopic features for regularly arranged elliptical particle assembly. Granular Matter 23, Article Number: 29 (2021)

  35. Pal, R.K., Awasthi, A.P., Geubelle, P.H.: Wave propagation in elasto-plastic granular systems. Granular Matter 15, 747–758 (2013)

    Article  Google Scholar 

  36. Reddy, N.S.C., He, H., Senetakis, K.: DEM analysis of small and small-to-medium strain shear modulus of sands. Comput. Geotech. 141, 104518 (2022)

    Article  Google Scholar 

  37. Yimsiri, S., Soga, K.: Micromechanics-based stress–strain behaviour of soils at small strains. Geotechnique 50, 559–571 (2000)

    Article  Google Scholar 

  38. Ren, J., Li, S., He, H., Senetakis, K.: The tribological behavior of iron tailing sand grain contacts in dry, water and biopolymer immersed states. Granular Matter 23(1), 12 (2021). https://doi.org/10.1007/s10035-020-01068-0

    Article  Google Scholar 

  39. Sandeep, C.S., Li, S., Senetakis, K.: Scale and surface morphology effects on the micromechanical contact behavior of granular materials. Tribol. Int. 159, 106929 (2021). https://doi.org/10.1016/j.triboint.2021.106929

    Article  Google Scholar 

  40. Taghizadeh, K., Shrivastava, R.K., Luding, S.: Stochastic model for energy propagation in disordered granular chains. Materials 14, 1815 (2021). https://doi.org/10.3390/ma14071815

    Article  ADS  Google Scholar 

  41. Tian, Y., Senetakis, K.: Influence of creep on the small-strain stiffness of sand-rubber mixtures. Geotechnique [Ahead of Print] (2021). https://doi.org/10.1680/jgeot.20.P.208

  42. Li, H., Kasyap, S.S., Senetakis, K.: Multi-scale study of the small-strain damping ratio of fiber-sand composites. Polymers 13(15), 2476 (2021)

    Article  Google Scholar 

  43. Fatahi, B., Fatahi, B., Le, T.M., Khabbaz, H.: Small-strain properties of soft clay treated with fibre and cement. Geosynth. Int. 20(4), 286–300 (2013)

    Article  Google Scholar 

  44. Jardine, R. J.: One Perspective of the pre-failure deformation characteristics of same geomaterials. In: Keynote Lecture, Proceedings of International symposium on Pre-failure Deformation of Geomaterials (IS-Hokkaido), vol. 2, pp. 855–885 (1995)

  45. Kuwano, R., Connolly, T.M., Jardine, R.J.: Anisotropic stiffness measurements in a stress-path triaxial cell. Geotech. Test. J. 23(2), 141–157 (2000)

    Article  Google Scholar 

  46. Dutta, T.T., Otsubo, M., Kuwano, R., Sato, T.: Estimating multidirectional stiffness of soils using planar piezoelectric transducers in a large triaxial apparatus. Soils Found. 60, 1269–1286 (2020)

    Article  Google Scholar 

  47. Zamanian, M., Payan, M., Memarian, S., Senetakis, K.: Impact of bedding plane direction and type of plastic microparticles on stiffness of inherently anisotropic gap-graded soils: Index, wave propagation and micromechanical-based interpretations. Soil Dyn. Earthq. Eng. [Ahead of Print], (2021). https://doi.org/10.1016/j.soildyn.2021.106924

  48. Hendry, M.T., Sharma, J.S., Martin, C.D., Barbour, S.L.: Effect of fibre content and structure on anisotropic elastic stiffness and shear strength of peat. Can. Geotech. J. 49(4), 403–415 (2012)

    Article  Google Scholar 

  49. Mitaritonna, G., Amorosi, A., Cotecchia, F.: Experimental investigation of the evolution of elastic stiffness anisotropy in a clayey soil. Géotechnique 64(6), 643–675 (2014)

    Article  Google Scholar 

  50. Senetakis, K., He, H.: Dynamic characterization of a biogenic sand with a resonant column of fixed-partly fixed boundary conditions. Soil Dyn. Earthq. Eng. 95, 180–187 (2017)

    Article  Google Scholar 

  51. Wang, Y.H., Gao, Y.: Mechanisms of aging-induced modulus changes in sand with inherent fabric anisotropy. J. Geotech. Geoenviron. Eng. 13(9), 470–482 (2013)

    Google Scholar 

  52. Wang, Y.H., Mok, C.M.: Mechanisms of small-strain shear-modulus anisotropy in soils. J. Geotech. Geoenviron. Eng. 134(10), 1516–1530 (2008)

    Article  Google Scholar 

  53. Zeng, X., Ni, B.: Stress-induced anisotropic Gmax of sands and its measurement. J. Geotech. Geoenviron. Eng. 125(9), 741–749 (1999)

    Article  Google Scholar 

  54. He, H., Li, S., Senetakis, K., Coop, M.R., Liu, S.: Influence of anisotropic stress path and stress history on stiffness of calcareous sands from Western Australia and the Philippines. J. Rock Mech. Geotech. Eng. 14(1), 197–209 (2022). https://doi.org/10.1016/j.jrmge.2021.03.015

    Article  Google Scholar 

  55. Diambra, A., Russell, A.R., Ibraim, E., Muir Wood, D.: Determination of fibre orientation distribution in reinforced sands. Géotechnique 57(7), 623–628 (2007)

    Article  Google Scholar 

  56. Soriano, I., Ibraim, E., Andò, E., Diambra, A., Laurencin, T., Moro, P., Viggiani, G.: 3D fibre architecture of fibre-reinforced sand. Granular Matter 19, 75 (2017). https://doi.org/10.1007/s10035-017-0760-3

    Article  Google Scholar 

  57. Diambra, A., Ibraim, E., Muir Wood, D., Russell, A.R.: Fibre-reinforced sands: experiments and modelling. Geotext. Geomembr. 28, 238–250 (2010)

    Article  Google Scholar 

  58. Mandolini, A., Diambra, A., Ibraim, E.: Strength anisotropy of fibre-reinforced sands under multiaxial loading. Géotechnique 69(3), 203–216 (2019)

    Article  Google Scholar 

  59. Michalowski, R.L., C̆ermák, J.: Strength anisotropy of fibre-reinforced sand. Comput. Geotech. 29(4), 279–299 (2002)

    Article  Google Scholar 

  60. Krumbein, W.C., Sloss, L. L.: Stratigraphy and Sedimentation, 2nd ed. W. H Freeman and Company (1963)

  61. Cho, G.C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness and strength: natural and crushed sands. J. Geotech. Geoenviron. Eng. 132(5), 591–602 (2006)

    Article  Google Scholar 

  62. Zhou, B., Wang, J.: Generation of a realistic 3D sand assembly using X-ray micro-computed tomography and spherical harmonic-based principal component analysis. Int. J. Numer. Anal. Meth. Geomech. 41(1), 93–109 (2017)

    Article  MathSciNet  Google Scholar 

  63. Zhou, B., Wang, J., Wang, H.: Three-dimensional sphericity, roundness and fractal dimension of sand particles. Geotechnique 68(1), 18–30 (2018)

    Article  Google Scholar 

  64. Payan, M., Khoshghalb, A., Senetakis, K., Khalili, N.: Effect of particle shape and validity of Gmax models for sand: A critical review and a new expression. Comput. Geotech. 72, 28–41 (2016)

    Article  Google Scholar 

  65. Payan, M., Senetakis, K., Khoshghalb, A., Khalili, N.: Influence of particle shape on small-strain material damping of dry sand. Geotechnique 66(7), 610–616 (2016)

    Article  Google Scholar 

  66. Tian, Y., Kasyap, S.S., Senetakis, K.: Influence of loading history and soil type on the normal contact behavior of natural sand grain-elastomer composite interfaces. Polymers 13(11), 1830 (2021)

    Article  Google Scholar 

  67. Sandeep, C.S., Senetakis, K.: Effect of Young’s modulus and surface roughness on the inter-particle friction of granular materials. Materials 11, 217 (2018). https://doi.org/10.3390/ma11020217

    Article  Google Scholar 

  68. Ren, J., He, H., Lau, K.-C., Senetakis, K.: Influence of iron oxide coating on the tribological behavior of sand grain contacts. Acta Geotechnica [Ahead of Print] (2021). https://doi.org/10.1007/s11440-021-01367-7

  69. Ibraim, E., Diambra, A., Muir Wood, D., Russell, A.R.: Static liquefaction of fibre-reinforced sand under monotonic loading. Geotext. Geomembr. 28(4), 374–385 (2010)

    Article  Google Scholar 

  70. Li, H., He, H., Senetakis, K.: Calibration exercise of a Hardin-type resonant column. Géotechnique 68(2), 171–176 (2018)

    Article  Google Scholar 

  71. He, H., Senetakis, K.: A study of wave velocities and poisson ratio of recycled concrete aggregate. Soils Found. 56(4), 593–607 (2016)

    Article  Google Scholar 

  72. Diambra, A., Ibraim, E.: Fibre-reinforced sand: interaction at the fibre and grain scale. Géotechnique 65(4), 296–308 (2015)

    Article  Google Scholar 

  73. Cheng, Z., Wang, J., Li, W.: The micro-mechanical behaviour of sand–rubber mixtures under shear: an experimental study based on X-ray micro-tomography. Soils Found. 60, 1251–1268 (2020)

    Article  Google Scholar 

  74. Senetakis, K., Payan, M., Li, H., Zamanian, M.: Nonlinear stiffness and damping characteristics of gravelly crushed rock: Developing generic curves and attempting multi-scale insights. Transp. Geotech. 31, 100668 (2021). https://doi.org/10.1016/j.trgeo.2021.100668

    Article  Google Scholar 

  75. He, H., Senetakis, K., Coop, M.R.: An investigation of the effect of shearing velocity on the inter-particle behavior of granular and composite materials with a new micromechanical dynamic testing apparatus. Tribol. Int. 134, 252–263 (2019)

    Article  Google Scholar 

  76. Lee, J.S., Santamarina, J.C.: Bender elements: performance and signal interpretation. J. Geotech. Geoenviron. Eng. 131(9), 1063–1070 (2005)

    Article  Google Scholar 

  77. Leong, E.C., Cahyadi, J., Rahardjo, H.: Measuring shear and compression wave velocities of soil using bender–extender elements. Can. Geotech. J. 46, 792–812 (2009)

    Article  Google Scholar 

  78. Youn, J.-U., Choo, Y.-W., Kim, D.S.: Measurement of small strain shear modulus Gmax of dry and saturated sands by bender element, resonant column, and torsional shear tests. Can. Geotech. J. 45(10), 1426–1438 (2008)

    Article  Google Scholar 

  79. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  80. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  81. Stoll, R.D.: Experimental studies of attenuation in sediments. J. Acoust. Soc. Am. 63(2), 607–613 (1979)

    Google Scholar 

  82. Jamiolkowski, M., Leroueil, S., Lo Priesti, D.: Design parameters from theory to practice. In Proceedings of the international conference on geotechnical engineering for coastal development: geo-coast. Coastal Development Institute of Technology Yokohama Japan, pp. 877–917 (1991)

  83. Hardin, B.O., Black, W.L.: Sand stiffness under various triaxial stresses. J. Soil Mech. Found. Div. ASCE 92(SM2), 27–42 (1966)

    Article  Google Scholar 

  84. Santamarina, C., Klein, K., Fam, M.: Soils and Waves. Wiley, New York (2001)

    Google Scholar 

  85. Kuwano, R.: The Stiffness and yielding anisotropy of sand. Ph.D. dissertation. Imperial college, University of London, London, UK (1999)

  86. Ng, C., Leung, E.: Determination of shear-wave velocities and shear moduli of completely decomposed tuff. J. Geotech. Geoenviron. Eng. 133(6), 630–640 (2007)

    Article  Google Scholar 

  87. Otsubo, M., O’Sullivan, C.: Experimental and DEM assessment of the stress-dependency of surface roughness effects on shear modulus. Soils Found. 58(3), 602–614 (2018)

    Article  Google Scholar 

  88. Jardine, R. J., Kuwano, R., Zdravkovic, L., Thornton, C.: Some fundamental aspects of the pre-failure behaviour of granular soils. In: M. Jamiolkowski et al., (Eds) Proceedings of International Symposium on Prefailure Deformation of Geomaterials, vol. 2, pp. 1077–1111 (1999)

  89. Gu, X., Hu, J., Huang, M.: Anisotropy of elasticity and fabric of granular soils. Granular Matter 19, 33 (2017). https://doi.org/10.1007/s10035-017-0717-6

    Article  Google Scholar 

  90. Payan, M., Khoshghalb, A., Senetakis, K., Khalili, N.: Small-strain stiffness of sand subjected to stress anisotropy. Soil Dyn. Earthq. Eng. 88, 143–151 (2016)

    Article  Google Scholar 

  91. Senetakis, K., Li, H.: Influence of stress anisotropy on small-strain stiffness of reinforced sand with polypropylene fibres. Soils Found. 57, 1077–1083 (2017)

    Article  Google Scholar 

  92. Sandeep, C.S., Li, S., Senetakis, K.: Experimental and analytical investigation on the normal contact behavior of natural proppant simulants. Geomech. Geophys. Geo-energy Geo-Resour. 7, 107 (2021). https://doi.org/10.1007/s40948-021-00296-9

    Article  Google Scholar 

  93. Sandeep, C.S., Marzulli, V., Cafaro, F., Senetakis, K., Pöschel, T.: Micromechanical behavior of DNA-1A Lunar Regolith Simulant in Comparison to Ottawa Sand. J. Geophys. Res.: Solid Earth 124(8), 8077–8100 (2019)

    Article  ADS  Google Scholar 

  94. Ziegler, M.: Application of geogrid reinforced constructions: history. Recent Future Develop. Procedia Eng. 172, 42–51 (2017)

    Article  Google Scholar 

  95. Cheng, H., Yamamoto, H., Thoeni, K., Wu, Y.: An analytical solution for geotextile-wrapped soil based on insights from DEM analysis. Geotext. Geomembr. 45, 361–376 (2017)

    Article  Google Scholar 

  96. Simpson, B., Atkinson, J.H., Jovičić, V.: The influence of anisotropy on calculations of ground settlements above tunnels. In: Proceedings of Geotechnical Aspects of Underground Construction in Soft Ground, The City University, London, pp. 591–595 (1996)

Download references

Acknowledgements

The work was supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China, project no. “CityU 11210419”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Senetakis.

Ethics declarations

Competing interests

The authors declare no conflict of interest from the present study. This work contains original material as a result of purely academic study without any kind of private funding or other conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection: Energy transport and dissipation in granular systems.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 344 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ren, J., Senetakis, K. et al. A study of wave propagation and stiffness anisotropy in anisotropically loaded granular material-synthetic fiber binary systems. Granular Matter 24, 85 (2022). https://doi.org/10.1007/s10035-022-01226-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-022-01226-6

Keywords

Navigation