Skip to main content
Log in

Wave transmission in 2D nonlinear granular-solid interfaces, including rotational and frictional effects

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We study the highly complex wave transmission at the interface between a two-dimensional (2D) hexagonally structured granular medium and a linearly elastic thin plate; we refer to this system as the “granular-solid interface”. By applying an impulsive excitation at the free end of the granular medium we study the nonlinear acoustics at the interface. A computational model is developed, where the thin plate under the plane-stress assumption is discretized by finite-elements (FEs), whereas the granular medium by discrete-elements (DEs). Apart from the highly discontinuous Hertzian granule-to-granule and granule-to-plate interactions, we also take into account rotational and frictional effects in the granules; these effects render the acoustics of the granular-solid interface strongly nonlinear and highly discontinuous. The interaction forces coupling the granular medium to the plate are computed by means of an algorithm of interrelated iterations and interpolations at successive time steps. Since frictional effects may yield numerical instabilities, our approach incorporates the continuous “Coulomb–tanh” friction model, whose efficacy is verified through convergence studies. By formulating appropriate theoretically predicted convergence criteria, we show that the stability of the algorithm depends on the time step, the mesh size of the FE model, and the frictional model parameters. Accordingly, convergence is ensured by introducing a self-adaptive time step scheme, which is informed by theoretical convergence criteria. An application of the algorithm for a specific granular-solid interface demonstrates its validity, accuracy and robustness. Wave transmission through the discrete–continuum interface is drastically delayed by the granular medium, which, inflicts significant “softening” to the nonlinear acoustics. Moreover, there is strong nonlinear wave dispersion and energy localization in the granular medium, resulting in highly reduced wave transmission to the plate. Moreover, these nonlinear acoustical features are tunable with the applied shock (or input energy). The model and results presented in this work apply to a broad class of nonlinear discrete–continuum interfaces, with broad applications, e.g., shock/blast mitigation, granular containers with flexible boundaries and acoustic non-reciprocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lazaridi, A.N., Nesterenko, V.F.: Observation of a new type of solitary waves in a one-dimensional granular medium. J. Appl. Mech. Tech. Phys. 26(3), 405–408 (1985)

    Article  ADS  Google Scholar 

  2. Nesterenko, V.F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24, 733–743 (1983)

    Article  ADS  Google Scholar 

  3. Nesterenko, V.F.: Solitary waves in discrete media with anomalous compressibility and similar to “sonic vacuum.” J. Phys. IV 4(C8), 729–734 (1994)

    Google Scholar 

  4. Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001)

    Book  Google Scholar 

  5. Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Strongly nonlinear waves in a chain of Teflon beads. Phys. Rev. E 72, 016603 (2005)

    Article  ADS  Google Scholar 

  6. Starosvetsky, Y., Jayaprakash, K.R., Hasan, M.A., Vakakis, A.F.: Topics on the Nonlinear Dynamics and Acoustics of Ordered Granular Media. World Scientific Press, Singapore (2017)

    Book  MATH  Google Scholar 

  7. Hasan, M.A., Cho, S., Remick, K., McFarland, D.M., Vakakis, A.F., Kriven, W.M.: Experimental study of nonlinear acoustic bands and propagating breathers in ordered granular media embedded in matrix. Granul. Matter 17, 49–72 (2015)

    Article  Google Scholar 

  8. Starosvetsky, Y., Vakakis, A.F.: Traveling waves and localized modes in one-dimensional homogeneous granular chains with no pre-compression. Phys. Rev. E 82(2), 026603 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. Zhang, Z., Manevitch, L.I., Smirnov, V., Bergman, L.A., Vakakis, A.F.: Extreme nonlinear energy exchanges in a geometrically nonlinear lattice oscillating in the plane. J. Mech. Phys. Solids 110, 1–20 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Hasan, M.A., Starosvetsky, Y., Vakakis, A.F., Manevitch, L.I.: Nonlinear targeted energy transfer and macroscopic analogue of the quantum Landau-Zener effect in coupled granular chains. Physica D 252, 46–58 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Zhang, Z., Koroleva, I., Manevitch, L.I., Bergman, L.A., Vakakis, A.F.: Non-reciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice. Phys. Rev. E 94(3), 032214 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. Zhang, Q., Li, W., Lambros, J., Bergman, L.A., Vakakis, A.F.: Pulse transmission and acoustic non-reciprocity in a granular channel with symmetry-breaking clearances. Granul. Matter 22(1), 20 (2020)

    Article  Google Scholar 

  13. Cui, J., Yang, T., Chen, L.: Frequency-preserved non-reciprocal acoustic propagation in a granular chain. Appl. Phys. Lett. 112, 181904 (2018)

    Article  ADS  Google Scholar 

  14. Melo, F., Job, S., Santibanez, F., Tapia, F.: Experimental evidence of shock mitigation in a Hertzian tapered chain. Phys. Rev. E 73(4), 041305 (2006)

    Article  ADS  Google Scholar 

  15. Hong, J.: Universal power-law decay of the impulse energy in granular protectors. Phys. Rev. Lett. 94, 108001 (2005)

    Article  ADS  Google Scholar 

  16. Sen, S., Manciu, F.S., Manciu, M.: Thermalizing an impulse. Phys. A 299, 551–558 (2001)

    Article  MATH  Google Scholar 

  17. Sen, S., Mohan, T.R.K., Visco, D.P., Swaminathan, S., Sokolow, A., Avalos, A., Nakagawa, M.: Using mechanical energy as a probe for the detection and imaging of shallow buried inclusions in dry granular beds. Int. J. Mod. Phys. B 19, 2951–2973 (2005)

    Article  ADS  Google Scholar 

  18. Spadoni, A., Daraio, C.: Generation and control of sound bullets with a nonlinear acoustic lens. Proc. Natl. Acad. Sci. 107(16), 7230–7234 (2010)

    Article  ADS  Google Scholar 

  19. Donahue, C.M., Anzel, P.W.J., Bonanomi, L., Keller, T.A., Daraio, C.: Experimental realization of a nonlinear acoustic lens with a tunable focus. Appl. Phys. Lett. 104(1), 014103 (2014)

    Article  ADS  Google Scholar 

  20. Lawney, B.P., Luding, S.: Frequency filtering in disordered granular chains. Acta Mech. 225, 2385–2407 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, F., Anzel, P., Yang, J., Kevrekidis, P.G., Daraio, C.: Granular acoustic switches and logic elements. Nat. Commun. 5, 5311 (2014)

    Article  ADS  Google Scholar 

  22. Job, S., Melo, F., Sokolow, A., Sen, S.: How Hertzian solitary waves interact with boundaries in a 1D granular medium. Phys. Rev. Lett. 94, 178002 (2005)

    Article  ADS  Google Scholar 

  23. Yang, J., Silvestro, C., Khatri, D., Nardo, L.D., Daraio, C.: Interaction of highly nonlinear solitary waves with linear elastic media. Phys. Rev. E 83, 046606 (2011)

    Article  ADS  Google Scholar 

  24. Yang, J., Khatri, D., Anzel, P., Daraio, C.: Interaction of highly nonlinear solitary waves with thin plates. Int. J. Solids Struct. 49, 1463–1471 (2012)

    Article  Google Scholar 

  25. Potekin, R., McFarland, D.M., Vakakis, A.F.: Nonlinear wave scattering at the flexible interface of a granular dimer chain. Granul. Matter 15, 51–68 (2016)

    Google Scholar 

  26. Zhang, Q., Potekin, R., Li, W., Vakakis, A.F.: Nonlinear wave scattering at the interface of granular dimer chains and an elastically supported membrane. Int. J. Solids Struct. 182–183(202001), 46–63 (2020)

    Article  Google Scholar 

  27. Awasthi, A.P., Smith, K.J., Geubelle, P.H., Lambros, J.: Propagation of solitary waves in 2D granular media: a numerical study. Mech. Mater. 54, 100–112 (2012)

    Article  Google Scholar 

  28. Leonard, A., Daraio, C.: Stress wave anisotropy in centered square highly nonlinear granular systems. Phys. Rev. Lett. 108, 214301 (2012)

    Article  ADS  Google Scholar 

  29. Leonard, A., Ponson, L., Daraio, C.: Wave mitigation in ordered networks of granular chains. J. Mech. Phys. Solids 73, 103–117 (2014)

    Article  ADS  Google Scholar 

  30. Leonard, A., Chong, C., Kevrekidis, P.G., Daraio, C.: Traveling waves in 2D hexagonal granular crystal lattices. Granul. Matter. 16, 531–542 (2014)

    Article  Google Scholar 

  31. Manjunath, M., Awasthi, A.P., Geubelle, P.H.: Plane wave propagation in 2D and 3D monodisperse periodic granular media. Granul. Matter 16, 141–150 (2014)

    Article  Google Scholar 

  32. Manjunath, M., Awasthi, A.P., Geubelle, P.H.: Wave propagation in 2D random granular media. Physica D 266, 42–48 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  33. Szelengowicz, I., Kevrekidis, P.G., Daraio, C.: Wave propagation in square granular crystals with spherical interstitial intruders. Phys. Rev. E 86, 061306 (2012)

    Article  ADS  Google Scholar 

  34. Szelengowicz, I., Hasan, M.A., Starosvetsky, Y., Vakakis, A.F., Daraio, C.: Energy equipartition in two-dimensional granular systems with spherical intruders. Phys. Rev. E 87, 032204 (2013)

    Article  ADS  Google Scholar 

  35. Lisyansky, A., Meimukhin, D., Starosvetsky, Y.: Primary wave transmission in the hexagonally packed, damped granular crystal with a spatially varying cross section. Commun. Nonlinear Sci. Numer. Simul. 27(1–3), 193–205 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Szelengowicz, I. M. N., Analysis and optimization of stress wave propagation in 2D granular crystals with defects, Ph.D. Thesis., California Institute of Technology (2013)

  37. Bassett, D.S., Owens, E.T., Porter, M.A., Manning, M.L., Daniels, K.E.: Extraction of force-chain network architecture in granular materials using community detection. Soft Matter 11(14), 2731–2744 (2015)

    Article  ADS  Google Scholar 

  38. Berthier, E., Porter, M.A., Daniels, K.E.: Forecasting failure locations in 2D disordered lattices. Proc. Natl. Acad. Sci. 116(34), 16742–16749 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Bassett, D.S., Owens, E.T., Daniels, K.E., Porter, M.A.: Influence of network topology on sound propagation in granular materials. Phys. Rev. E 86(4), 041306 (2018)

    Article  ADS  Google Scholar 

  40. Xu, J., Zheng, B.: Stress wave propagation in 2D buckyball lattice. Sci. Rep. 6(1), 1–8 (2016)

    MathSciNet  Google Scholar 

  41. Wang, J., Chu, X., Zhang, J., Liu, H.: The effects of microstructure on wave velocity and wavefront in granular assemblies with binary-sized particles. Int. J. Solids Struct. 159, 156–162 (2019)

    Article  Google Scholar 

  42. Hua, T., Van Gorder, R.A.: Wave propagation and pattern formation in 2D hexagonally-packed granular crystals under various configurations. Granul. Matter 21, 3 (2019)

    Article  Google Scholar 

  43. Li, L., Yang, X., Zhang, W.: Two interactional solitary waves propagating in two-dimensional hexagonal packing granular system. Granul. Matter 20, 49 (2018)

    Article  ADS  Google Scholar 

  44. Starosvetsky, Y., Hasan, M.A., Vakakis, A.F.: “Nonlinear pulse equipartition in weakly coupled ordered granular chains with no pre-compression. J. Comp. Nonlinear Dyn. 8, 034504 (2013)

    Article  Google Scholar 

  45. Zhang, Y., Hasan, M.A., Starosvetsky, Y., McFarland, D.M., Vakakis, A.F.: Nonlinear mixed solitary—shear waves and pulse equi-partition in a granular network. Physica D 291, 45–61 (2015)

    Article  ADS  Google Scholar 

  46. Starosvetsky, Y., Hasan, M.A., Vakakis, A.F., Manevitch, L.I.: Strongly nonlinear beat phenomena and energy exchanges in weakly coupled granular chains on elastic foundations. SIAM J. Appl. Math. 72(1), 337–361 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hasan, M.A., Cho, S., Remick, K., Vakakis, A.F., McFarland, D.M., Kriven, W.K.: Primary pulse transmission in coupled steel granular chains embedded in PDMS matrix: experiment and modeling. Int. J. Solids Struct. 50, 3207–3224 (2013)

    Article  Google Scholar 

  48. Ben-Meir, Y., Starosvetsky, Y.: Modulation of solitary waves and formation of stable attractors in granular scalar models subjected to on-site perturbation. Wave Motion 51, 685–715 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yang, J., Sutton, M.: Nonlinear wave propagation in a hexagonally packed granular channel under rotational dynamics. Int. J. Solids. Struct. 77(3), 65–73 (2015)

    Article  Google Scholar 

  50. Goldenberg, C., Goldhirsch, I.: Friction enhances elasticity in granular solids. Nature 435, 188–191 (2005)

    Article  ADS  Google Scholar 

  51. Chattoraj, J., Gendelman, O., Ciamarra, M.P., Procaccia, I.: Oscillatory instabilities in frictional granular matter. Phys. Rev. Lett. 123, 098003 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  52. Charan H., Gendelman O., Procaccia I., Sheffer Y. Giant Amplification of Small Perturbations in Frictional Amorphous Solid, arXiv:2001.06862 [cond-mat.soft]

  53. Tsuji, Y., Tanaka, T., Ishida, T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71, 239–250 (1992)

    Article  Google Scholar 

  54. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  55. Adersson, S., Söderberg, A., Björklund, S.: Friction models for sliding dry, boundary and mixed lubricated contacts. Tribol. Int. 40, 580–587 (2007)

    Article  Google Scholar 

  56. Pennestrì, E., Rossi, V., Salvini, P., Valentini, P.P.: Review and comparison of dry friction force models. Nonl. Dyn. 83, 1785–1801 (2016)

    Article  MATH  Google Scholar 

  57. Timoshenko, S.P., Goyder, J.N.: Theory of Elasticity, 3rd edn. McGraw Hill, New York (2010)

    Google Scholar 

  58. Whitham, G.B.: Linear and Nonlinear Waves. Wiley Interscience, New York (1974)

    MATH  Google Scholar 

  59. Starosvetsky, Y., Vakakis, A.F.: Primary wave transmission in systems of elastic rods with granular interfaces. Wave Motion 48(7), 568–585 (2011)

    Article  MATH  Google Scholar 

  60. Zienkiewicz, O.C., Taylor, R.L., Nithiarasu, P., Zhu, J.Z.: The Finite Element Method. McGraw-Hill, London (1977)

    Google Scholar 

  61. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, New York (2000)

    MATH  Google Scholar 

  62. Hasan, M.A., Vakakis, A.F., McFarland, D.M.: Nonlinear localization, passive wave arrest and traveling breathers in two-dimensional granular networks with discontinuous lateral boundary conditions. Wave Motion 60, 196–219 (2016)

    Article  MATH  Google Scholar 

  63. Vakakis, A.F., Manevitch, L.I., Mikhlin, Yu.V., Pilipchuk, V.N., Zevin, A.A.: Normal Modes and Localization in Nonlinear Systems. John Wiley & Sons, New York (1996)

    Book  MATH  Google Scholar 

  64. Mojahed, A., Bunyan, J., Tawfick, S., Vakakis, A.F.: Tunable acoustic non-reciprocity in strongly nonlinear waveguides with asymmetry. Phys. Rev. Appl. 12, 034033 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the China Scholarship Council (Grant 201706160084) that supported the visit of Qifan Zhang to the University of Illinois, Urbana Champaign.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qifan Zhang or Alexander F. Vakakis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: The computational algorithm and its numerical stability

The computational algorithm is outlined in the flow chart of Fig. 13.

Fig. 13
figure 13

Flow chart of the computational algorithm for computing the converged interaction forces applied to the plate in the time interval \(0 \le \tau \le T\); \(\left( {{\varvec{N}},{\varvec{f}}} \right)_{s + 1}^{\left( j \right)}\) denotes the j-th iteration of the interaction force vector, and \({\varvec{F}}_{{{\varvec{s}} + 1}}\) the converged force vector at the time instant \(\tau_{s + 1}\)

An iterative scheme computes the converged global interaction force vector \({\varvec{F}}_{s + 1}^{C}\) between the granular medium and the plate at the time instant \(\tau = \tau_{s + 1}\) once the solution at the previous time instant \(\tau = \tau_{s}\) has been determined (where the notation of the main text holds throughout). The iteration scheme is divided into two distinct phases. In the first phase we consider exclusively the response of the thin plate. To compute the response of the plate in the first iteration (\(j = 1\)) of the flow chart of Fig. 13 at time instant \(\tau_{s + 1}\), we select the global force vector applied to the plate as \({\varvec{F}}_{s + 1}^{\left( 1 \right)} = {\varvec{F}}_{{\varvec{s}}}^{C}\). Then, the first iteration of the response of the plate \({\varvec{x}}_{s + 1}^{\left( 1 \right)}\) at the time instant \(\tau_{s + 1}\), is computed by solving Eq. (11) using the \(\beta\)-Newmark method based on the assumption of constant acceleration between successive time steps,

$$\dot{{\varvec{x}}}_{s + 1}^{\left( 1 \right)} = \dot{{\varvec{x}}}_{s}^{C} + \left[ {\left( {1 - \gamma } \right){\ddot{\varvec{x}}}_{s}^{C} + \gamma {\ddot{\varvec{x}}}_{s + 1}^{\left( 1 \right)} } \right] \Delta \tau$$
(15a)
$${\varvec{x}}_{s + 1}^{\left( 1 \right)} = {\varvec{x}}_{s}^{C} + \dot{\varvec{x}}_{s}^{C} \Delta \tau + \left[ {\frac{1 - 2\beta }{2} {\ddot{\varvec{x}}}_{s}^{C} + \beta {\ddot{\varvec{x}}}_{s + 1}^{\left( 1 \right)} } \right]\Delta \tau^{2}$$
(15b)
$$\varvec{M}{\ddot{\varvec{x}}}_{s + 1}^{\left( 1 \right)} + \varvec{K}{\varvec{x}}_{s + 1}^{\left( 1 \right)} = {\varvec{F}}_{s + 1}^{\left( 1 \right)}$$
(15c)

with \(\beta = 1/4\) and \(\gamma = 1/2\). Note that we use the converged values for the response variables at the previous time step \(\tau_{s}\), and that the equations above are linear with respect to the response “status” vectors of the plate, \({\varvec{x}}_{s + 1}^{\left( 1 \right)}\), \(\dot{\varvec{x}}_{s + 1}^{\left( 1 \right)}\) and \({\ddot{\varvec{x}}}_{s + 1}^{\left( 1 \right)}\), at the current time instant \(\tau_{s + 1}\). Once the first iteration for the status vectors \({\varvec{x}}_{s}^{\left( 1 \right)}\), \(\dot{\varvec{x}}_{s}^{\left( 1 \right)}\) and \({\varvec{x}}_{s + 1}^{\left( 1 \right)}\) have been evaluated, the first iteration of the displacement vector \({\varvec{x}}^{\left( 1 \right)} \left( \tau \right)\) of the plate can be evaluated over the entire time interval \(\tau \in \left[ {\tau_{s} ,\tau_{s + 1} } \right]\) as follows:

$$\begin{array}{*{20}c} {{\varvec{x}}^{\left( 1 \right)} \left( \tau \right) = {\varvec{x}}_{s}^{C} + \left( {\tau - \tau_{s} } \right)\dot{\varvec{x}}_{s}^{C} + \frac{{\left( {\tau - \tau_{s} } \right)^{2} }}{{\Delta \tau^{2} }}\left( {{\varvec{x}}_{s + 1}^{\left( 1 \right)} - {\varvec{x}}_{s}^{C} - \dot{\varvec{x}}_{s}^{C} \Delta \tau } \right)} \\ \end{array}$$
(16)

This expression is based on the assumption of (approximately) constant acceleration between successive time steps. Once the response of the thin plate in the entire interval \(\tau \in \left[ {\tau_{s} ,\tau_{s + 1} } \right]\) is determined, the responses of the rigid layers at the free boundary of the plate are also available, which act as a moving boundary for the DE system modeling the granular medium. This completes the first phase of the first iteration, as it evaluates the first iterate of the plate response.

In the second phase of the first iteration (i.e., still for \(j = 1\)), we compute the response of the granular medium at the time instant \(\tau_{s + 1}\). To this end, the DE Eqs (1) are solved numerically using the fourth order Runge–Kutta method. To this end, the DE system (1) is transformed into a set of first-order differential equations,

$$\dot{\varvec{u}}_{b}^{\left( 1 \right)} = {\varvec{v}}_{b}^{\left( 1 \right)}$$
(17a)
$$\dot{\varvec{v}}_{{\varvec{b}}}^{\left( 1 \right)} = \varvec{L}\left( {{\varvec{u}}_{b}^{\left( 1 \right)} ,\varvec{v}_{b}^{\left( 1 \right)} ,{\varvec{x}}^{\left( 1 \right)} \left( \tau \right),\dot{\varvec{x}}^{\left( 1 \right)} \left( \tau \right)} \right)$$
(17b)

or,

$$\dot{\varvec{w}}_{b}^{\left( 1 \right)} = {\varvec{G}}\left( {{\varvec{w}}_{b}^{\left( 1 \right)} ,{\varvec{x}}^{\left( 1 \right)} \left( \tau \right),\dot{\varvec{x}}^{\left( 1 \right)} \left( \tau \right)} \right) ,\quad \tau \in \left[ {\tau_{s} ,\tau_{s + 1} } \right]$$
(17c)

where \({\varvec{u}}_{b}^{\left( 1 \right)}\) denotes the first iteration of the displacement vector of all granules in the time interval \(\tau \in \left[ {\tau_{s} ,\tau_{s + 1} } \right]\), \({\varvec{v}}_{b}^{\left( 1 \right)} =\) \(\dot{{u}}_{b}^{\left( 1 \right)}\), \({\varvec{w}}_{b}^{\left( 1 \right)} \equiv \left( {{\varvec{u}}_{b}^{\left( 1 \right)} ,{\varvec{v}}_{b}^{\left( 1 \right)} } \right)\), and \({\varvec{L}}\left( \cdot \right),{ }\) \({\varvec{G}}\left( \cdot \right)\) are highly discontinuous functions, given that the interaction forces between granules can be Hertzian, frictional and viscous (due to structural damping of the material of the granules). The DE system (17c) is then numerically solved by applying the fourth order Runge–Kutta method,

This computation yields the status vectors of the first iteration of the granular medium at \(\tau = \tau_{s + 1}\). Following that, the second iteration of the interaction forces at \(\tau_{s + 1}\) is computed by applying Eqs (2) and (5) with the first iteration of the plate and granular mediums responses. Hence, we compute the second iterates of the interaction force vectors applied to the plate, namely, \({\varvec{F}}_{s + 1}^{\left( 2 \right)} \equiv \left( {{\varvec{N}}_{s + 1}^{\left( 2 \right)} ,{\varvec{f}}_{s + 1}^{\left( 2 \right)} } \right)\) at time instant \(\tau_{s + 1}\). This competes the second phase of the first iteration at \(\tau_{s + 1}\). Then, the previous iteration scheme can continue with the second iteration at \(\tau_{s + 1}\), setting \(j = 2\), and repeating the two previous phases, and so on.

This iterative scheme generates a nonlinear map that relates the j-th iterates of the interaction forces at the rigid layers on the plate to the \((j + 1)\)-th iterates, or in symbolic form, \(\left[ {{\varvec{N}}_{s + 1}^{\left( j \right)} ,{\varvec{f}}_{s + 1}^{\left( j \right)} } \right] \to \left[ {{\varvec{N}}_{s + 1}^{{\left( {j + 1} \right)}} ,{\varvec{f}}_{s + 1}^{{\left( {j + 1} \right)}} } \right]\) at the current time step \(\tau_{s + 1}\). With increasing number of iterations the interaction forces are expected to converge (the conditions for convergence are discussed below), by satisfying the following two convergence criteria,

$$\left| {f_{k,s + 1}^{{\left( {j + 1} \right)}} - f_{k,s + 1}^{\left( j \right)} } \right| < abstol; \left| {N_{k,s + 1}^{{\left( {j + 1} \right)}} - N_{k,s + 1}^{\left( j \right)} } \right| < abstol$$
(18a)
$$\left| {f_{k,s + 1}^{{\left( {j + 1} \right)}} - f_{k,s + 1}^{\left( j \right)} } \right|/\left| {f_{k,s + 1}^{\left( j \right)} } \right| < reltol; \left| {N_{k,s + 1}^{{\left( {j + 1} \right)}} - N_{k,s + 1}^{\left( j \right)} } \right|/N_{k,s + 1}^{\left( j \right)} < reltol$$
(18b)

where \(abstol\) denotes the absolute tolerance, and \(reltol\) the relative tolerance. As a reminder, \(N_{k,s + 1}^{\left( j \right)}\) and \(f_{k,s + 1}^{\left( j \right)}\) denote the k-th elements of the global normal and tangential interaction force vectors on the plate, \({\varvec{N}}_{s + 1}^{\left( j \right)}\) and \({\varvec{f}}_{s + 1}^{\left( j \right)}\) at time instant \(\tau_{s + 1}\). The interaction force vectors are considered to have converged if either (18a) and/or (18b) is satisfied for all nodes \(k\) at the rigid layers of the plate (cf. Fig. 3). Supposing that convergence has been achieved at the J-th iteration, we denote the converged interaction force vectors at time instant \(\tau_{s + 1}\) by \(\left( {{\varvec{N}}_{s + 1}^{C} ,{\varvec{f}}_{s + 1}^{C} } \right) \equiv \left( {{\varvec{N}}_{s + 1}^{\left( J \right)} ,{\varvec{f}}_{s + 1}^{\left( J \right)} } \right)\). Once the interaction forces on the plate have converged, all the response status vectors at the current time step \(\tau_{s + 1}\) will have converged as well, and the computation proceeds to the next time step \(\tau_{s + 2}\), where the outlined iteration scheme is repeated until the entire time interval \(T\) of the simulation is exhausted.

Clearly, central to the stability and convergence of the computational algorithm is the stability of the previous global map \(\left[ {{\varvec{N}}_{s + 1}^{\left( j \right)} ,{\varvec{f}}_{s + 1}^{\left( j \right)} } \right] \to \left[ {{\varvec{N}}_{s + 1}^{{\left( {j + 1} \right)}} ,{\varvec{f}}_{s + 1}^{{\left( {j + 1} \right)}} } \right]\) at an arbitrary—say the (j + 1)th iteration. To ensure the convergence of the \(\beta\)-Newmark method, the time step increment \(\Delta \tau\) should be sufficiently small so that variations of the interaction forces due to the time delay of the wave propagation at a contact point at \(\tau_{s + 1}\) has negligible effects on the responses at the other contact points at the current time step \(\tau_{s + 1}\). Hence, since the interaction forces at a contact point of the plate have an approximately local effect, the next iteration of the interaction forces at that contact point should also be determined only by the local response at the contact point (i.e., we assume that \(\Delta \tau\) is small enough so that “coupling” effects between different contact points may be neglected). Accordingly, the global map \(\left[ {{\varvec{N}}_{s + 1}^{\left( j \right)} ,{\varvec{f}}_{s + 1}^{\left( j \right)} } \right] \to \left[ {{\varvec{N}}_{s + 1}^{{\left( {j + 1} \right)}} ,{\varvec{f}}_{s + 1}^{{\left( {j + 1} \right)}} } \right]\) can be decomposed into individual 2D local maps \(\left( {N_{k,s + 1}^{\left( j \right)} ,f_{k,s + 1}^{\left( j \right)} } \right) \to \left( {N_{k,s + 1}^{{\left( {j + 1} \right)}} ,f_{k,s + 1}^{{\left( {j + 1} \right)}} } \right)\) at each contact point \(k\) at the current time step. Clearly, the global map is stable if all 2D local maps are stable (i.e., for every contact point \(k\) on the plate).

Note that the (j + 1)th iterate of each interaction force component at the contact point \(k\) of the plate at time instant \(\tau_{s + 1}\) can be expressed in explicit form as follows,

$$N_{k,s + 1}^{{\left( {j + 1} \right)}} = - \frac{4}{3}E^{*} \sqrt {R^{*} } \left[ {u_{k,p,n,s + 1}^{\left( j \right)} - u_{k,b,n,s + 1}^{\left( j \right)} } \right]_{ + }^{3/2}$$
(19a)
$$f_{k,s + 1}^{{\left( {j + 1} \right)}} = - \mu \left| {N_{k,s + 1}^{{\left( {j + 1} \right)}} } \right|\tanh \left[ {k_{s} \left( {v_{k,p,t,s + 1}^{\left( j \right)} - v_{k,b,t,s + 1}^{\left( j \right)} } \right)} \right]$$
(19b)

where referring to the notation introduced in Fig. 3, the subscripts \(p,b\) denote plate and contacting granule, respectively, whereas the subscripts \(n,t\) denote normal and tangential components, respectively. Hence, in (19a,b) the variables \(u_{k,p,n,s + 1}^{\left( j \right)}\) and \(u_{k,b,n,s + 1}^{\left( j \right)}\) \(\left( {u_{k,p,t,s + 1}^{\left( j \right)} {\text{ and }}u_{k,b,t,s + 1}^{\left( j \right)} } \right)\) denote the j-th iterates of the normal (tangential) components of the deformations of the plate and the contacting granule at time instant \(\tau_{s + 1}\), respectively. In addition, \(v = \dot{u}\), represents the corresponding velocity. Furthermore, \(N_{k,s + 1}^{{\left( {j + 1} \right)}}\) and \(f_{k,s + 1}^{{\left( {j + 1} \right)}}\) denote the normal and tangential forces applied at the kj-th contact point of the plate at the current time instant \(\tau_{s + 1}\). As the small rigid layers at the boundary of the plate are assumed to be flat and massless, the dissipative term in the normal force is omitted, while \(E^{*} = E_{b} /\left( {1 - \nu_{b}^{2} } \right)\) and \(R^{*} = R_{b}\).

Relations (19a, b) are in scalar form, with the positive directions defined in Fig. 3. To evaluate the stability of the 2D local map \(\left( {N_{k,s + 1}^{\left( j \right)} ,f_{k,s + 1}^{\left( j \right)} } \right) \to \left( {N_{k,s + 1}^{{\left( {j + 1} \right)}} ,f_{k,s + 1}^{{\left( {j + 1} \right)}} } \right)\) it is necessary to examine its \(\left( {2 \times 2} \right)\) Jacobian matrix,

$$\frac{{\partial \left( {N_{k,s + 1}^{{\left( {j + 1} \right)}} ,f_{k,s + 1}^{{\left( {j + 1} \right)}} } \right)}}{{\partial \left( {N_{k,s + 1}^{\left( j \right)} ,f_{k,s + 1}^{\left( j \right)} } \right)}} = \frac{{\partial \left( {N_{k,s + 1}^{{\left( {j + 1} \right)}} ,f_{k,s + 1}^{{\left( {j + 1} \right)}} } \right)}}{{\partial \left( {u_{k,p,n,s + 1}^{\left( j \right)} - u_{k,b,n,s + 1}^{\left( j \right)} ,v_{k,p,t,s + 1}^{\left( j \right)} - v_{k,b,t,s + 1}^{\left( j \right)} } \right)}}\left[ {\frac{{\partial \left( {N_{k,s + 1}^{{\left( {j + 1} \right)}} ,f_{k,s + 1}^{{\left( {j + 1} \right)}} } \right)}}{{\partial \left( {u_{k,p,n,s + 1}^{\left( j \right)} - u_{k,b,n,s + 1}^{\left( j \right)} ,v_{k,p,t,s + 1}^{\left( j \right)} - v_{k,b,t,s + 1}^{\left( j \right)} } \right)}}} \right]$$
(20)

and compute its eigenvalues. The first multiplicative term in (20) can be explicitly evaluated by relations (19a, b). To evaluate the second multiplicative term, we consider the discretized differential equations at successive time steps to evaluate the sensitivities of the responses of the plate and granules at the current time step. The response of the plate at the j-th iteration and time instant \(\tau_{s + 1}\) subject to the interaction forces at the same iteration can be computed by solving Eq. (11):

$$\dot{\varvec{x}}_{s + 1}^{\left( j \right)} = \dot{\varvec{x}}_{s}^{C} + \frac{1}{2}{\ddot{\varvec{x}}}_{s}^{C} \Delta \tau + \frac{1}{2}{\ddot{\varvec{x}}}_{s + 1}^{\left( j \right)} \Delta \tau$$
(21a)
$${\varvec{x}}_{s + 1}^{\left( j \right)} = {\varvec{x}}_{s}^{C} + \dot{\varvec{x}}_{s}^{C} \Delta \tau + \frac{1}{4}{\ddot{\varvec{x}}}_{s}^{C} \Delta \tau^{2} + \frac{1}{4}{\ddot{\varvec{x}}}_{s + 1}^{\left( j \right)} \Delta \tau^{2}$$
(21b)
$${\ddot{\varvec{x}}}_{s + 1}^{\left( j \right)} = \left( {{\varvec{M}} + \frac{1}{4}{\varvec{K}}\Delta \tau^{2} } \right)^{ - 1} {\varvec{F}}_{s + 1}^{\left( j \right)} - \left( {{\varvec{M}} + \frac{1}{4}{\varvec{K}}\Delta \tau^{2} } \right)^{ - 1} {\varvec{K}}\left( {{\varvec{x}}_{s}^{C} + \dot{\varvec{x}}_{s}^{C} \Delta \tau + \frac{1}{4}{\ddot{\varvec{x}}}_{s}^{C} \Delta \tau^{2} } \right)$$
(21c)

We note at this point that the normal and tangential displacements at the \(k - th\) contact point can be linearly related to the plate displacement vector \({ \varvec{x}}_{s + 1}^{\left( j \right)}\) as follows:

$$u_{k,p,n,s + 1}^{\left( j \right)} = {\varvec{T}}_{k,n} {\varvec{x}}_{s + 1}^{\left( j \right)}$$
(22a)
$$u_{k,p,t,s + 1}^{\left( j \right)} = {\varvec{T}}_{k,t} {\varvec{x}}_{s + 1}^{\left( j \right)}$$
(22b)
$${\varvec{T}}_{k} = \left( {{\varvec{T}}_{k,n} ,{\varvec{T}}_{k,t} } \right)^{T}$$
(22c)

Note that \(u_{k,p,n,s + 1}^{\left( j \right)}\) and \(u_{k,p,t,s + 1}^{\left( j \right)}\) are the components of \(\varvec{x}_{s + 1}^{\left( j \right)}\) at the normal and tangential DOFs at the node of the k-th contact point, respectively; also, \({\varvec{T}}_{k,n}\) and \({\varvec{T}}_{k,t}\) are sparse vectors whose only non-zero terms, with value equal to unity, are located at the normal and tangential driving DOFs, respectively, for the k-th contact point. Since the corresponding components of the force vector \({\varvec{F}}_{s + 1}^{\left( j \right)}\) are \(N_{k,s + 1}^{\left( j \right)}\) and \(f_{k,s + 1}^{\left( j \right)}\), It follows that:

$$\begin{array}{*{20}c} {\frac{{\partial {\varvec{F}}_{s + 1}^{\left( j \right)} }}{{\partial \left( {N_{k,s + 1}^{\left( j \right)} ,f_{k,s + 1}^{\left( j \right)} } \right)}} = {\varvec{T}}_{k}^{T} } \\ \end{array}$$
(23)

Therefore, the plate component of the second multiplicative term in Eq. (20) could be computed by the chain rule:

$$\frac{{\partial \left( {u_{k,p,n,s + 1}^{\left( j \right)} ,u_{k,p,t,s + 1}^{\left( j \right)} } \right)}}{{\left( {N_{k,s + 1}^{\left( j \right)} ,f_{k,s + 1}^{\left( j \right)} } \right)}} = \frac{{\partial \left( {u_{k,p,n,s + 1}^{\left( j \right)} ,u_{k,p,t,s + 1}^{\left( j \right)} } \right)}}{{\partial {\varvec{x}}_{s + 1}^{\left( j \right)} }} \cdot \frac{{\partial {\varvec{x}}_{s + 1}^{\left( j \right)} }}{{\partial {\ddot{\varvec{x}}}_{s + 1}^{\left( j \right)} }} \cdot \frac{{\partial {\ddot{\varvec{x}}}_{s + 1}^{\left( j \right)} }}{{\partial {\varvec{F}}_{s + 1}^{\left( j \right)} }} \cdot \frac{{\partial {\varvec{F}}_{s + 1}^{\left( j \right)} }}{{\partial \left( {N_{k,s + 1}^{\left( j \right)} ,f_{k,s + 1}^{\left( j \right)} } \right)}}$$
(24a)
$$\frac{{\partial \left( {v_{k,p,n,s + 1}^{\left( j \right)} ,v_{k,p,t,s + 1}^{\left( j \right)} } \right)}}{{\partial \left( {N_{k,s + 1}^{\left( j \right)} ,f_{k,s + 1}^{\left( j \right)} } \right)}} = \frac{{\partial \left( {\dot{u}_{k,p,n,s + 1}^{\left( j \right)} ,\dot{u}_{k,p,t,s + 1}^{\left( j \right)} } \right)}}{{\partial \dot{{\varvec{x}}}_{s + 1}^{\left( j \right)} }} \cdot \frac{{\partial \dot{\varvec{x}}_{s + 1}^{\left( j \right)} }}{{\partial {\ddot{\varvec{x}}}_{s + 1}^{\left( j \right)} }} \cdot \frac{{\partial {\ddot{\varvec{x}}}_{s + 1}^{\left( j \right)} }}{{\partial {\varvec{F}}_{s + 1}^{\left( j \right)} }} \cdot \frac{{\partial {\varvec{F}}_{s + 1}^{\left( j \right)} }}{{\partial \left( {N_{k,s + 1}^{\left( j \right)} ,f_{k,s + 1}^{\left( j \right)} } \right)}}$$
(24b)

Substituting relations (21), (22) and (23) into Eqs. (24a, b), we derive the following expressions:

$$\frac{{\partial \left( {u_{k,p,n,s + 1}^{\left( j \right)} ,u_{k,p,t,s + 1}^{\left( j \right)} } \right)}}{{\partial \left( {N_{k,s + 1}^{\left( j \right)} ,f_{k,s + 1}^{\left( j \right)} } \right)}} = \frac{1}{4} \Delta \tau^{2} {\varvec{T}}_{k} \left( {{\varvec{M}} + \frac{1}{4}{\varvec{K}}\Delta \tau^{2} } \right)^{ - 1} {\varvec{T}}_{k}^{T}$$
(25a)
$$\frac{{\partial \left( {v_{k,p,n,s + 1}^{\left( j \right)} ,v_{k,p,t,s + 1}^{\left( j \right)} } \right)}}{{\partial \left( {N_{k,s + 1}^{\left( j \right)} ,f_{k,s + 1}^{\left( j \right)} } \right)}} = \frac{1}{2} \Delta \tau {\varvec{T}}_{k} \left( {{\varvec{M}} + \frac{1}{4}{\varvec{K}}\Delta \tau^{2} } \right)^{ - 1} {\varvec{T}}_{k}^{T}$$
(25b)

Since we assumed that the effect of the interaction forces is nearly local, it is logical to assume that due to the symmetry of the rigid layers the normal forces cannot generate tangential responses, while the tangential forces cannot generate normal responses at the current time step. This yields the following further approximations:

$$\begin{array}{*{20}c} {\frac{{\partial u_{k,p,n,s + 1}^{\left( j \right)} }}{{\partial f_{k,s + 1}^{\left( j \right)} }} \approx \frac{{\partial v_{k,p,n,s + 1}^{\left( j \right)} }}{{\partial f_{k,s + 1}^{\left( j \right)} }} \approx \frac{{\partial u_{k,p,t,s + 1}^{\left( j \right)} }}{{\partial N_{k,s + 1}^{\left( j \right)} }} \approx \frac{{\partial v_{k,p,t,s + 1}^{\left( j \right)} }}{{\partial N_{k,s + 1}^{\left( j \right)} }} \approx 0} \\ \end{array}$$
(26)

Substituting (26) to relations (25a, b), we derive the following closed form simplified diagonalized sensitivity matrix for the responses at the contact points on the plate:

$$\frac{{\partial \left( {u_{k,p,n,s + 1}^{\left( j \right)} ,v_{k,p,t,s + 1}^{\left( j \right)} } \right)}}{{\partial \left( {N_{k,s + 1}^{\left( j \right)} ,f_{k,s + 1}^{\left( j \right)} } \right)}} = Diag\left[ { \frac{1}{4} \Delta \tau^{2} {\varvec{T}}_{k,n} \left( {{\varvec{M}} + \frac{1}{4}{\varvec{K}}\Delta \tau^{2} } \right)^{ - 1} {\varvec{T}}_{k,n}^{T} ,\frac{1}{2}\Delta \tau {\varvec{T}}_{k,t} \left( {{\varvec{M}} + \frac{1}{4}{\varvec{K}}\Delta \tau^{2} } \right)^{ - 1} {\varvec{T}}_{k,t}^{T} } \right]$$
(27)

Similarly, by imposing the previous assumptions we can compute the corresponding sensitivities \(\frac{{\partial \left( {u_{k,b,n,s + 1}^{\left( j \right)} ,v_{k,b,t,s + 1}^{\left( j \right)} } \right)}}{{\partial \left( {N_{k,s + 1}^{\left( j \right)} ,f_{k,s + 1}^{\left( j \right)} } \right)}}\) of the contacting boundary granules. However, as the mass of a single granule is much larger than the mass of the finite element of the plate attached to the contacting rigid layer, it is logical to assume that the response of the rigid layer should be much more sensitive with respect to the interaction forces compared to the response of the granule. Hence, as an additional approximation, we may neglect the sensitivities related to the granule responses, thus simplifying Eq. (20) as follows:

$$\frac{{\partial \left( {N_{k,s + 1}^{{\left( {j + 1} \right)}} ,f_{k,s + 1}^{{\left( {j + 1} \right)}} } \right)}}{{\partial \left( {N_{k,s + 1}^{\left( j \right)} ,f_{k,s + 1}^{\left( j \right)} } \right)}} \approx \frac{{\partial \left( {N_{k,s + 1}^{{\left( {j + 1} \right)}} ,f_{k,s + 1}^{{\left( {j + 1} \right)}} } \right)}}{{\partial \left( {u_{k,p,n,s + 1}^{\left( j \right)} ,v_{k,p,t,s + 1}^{\left( j \right)} } \right)}} \cdot \frac{{\partial \left( {u_{k,p,n,s + 1}^{\left( j \right)} ,v_{k,p,t,s + 1}^{\left( j \right)} } \right)}}{{\partial \left( {N_{k,s + 1}^{\left( j \right)} ,f_{k,s + 1}^{\left( j \right)} } \right)}}$$
(28)

As a final step, the Jacobian matrix of the local nonlinear map at contact point \(k\) on the rigid layer of the plate, \(\left( {N_{k,s + 1}^{\left( j \right)} ,f_{k,s + 1}^{\left( j \right)} } \right) \to \left( {N_{k,s + 1}^{{\left( {j + 1} \right)}} ,f_{k,s + 1}^{{\left( {j + 1} \right)}} } \right)\) is approximated in closed form by substituting the relations (19a, b) and (27) into (28). As the Jacobian matrix is semi-negative definite for arbitrary interaction forces, according to the Banach fixed point theorem the local map has a unique fixed point (i.e., it is guaranteed to converge to a solution), and its eigenvalues are approximately evaluated in closed form as follows:

$$\lambda_{k1,s + 1} = - \frac{1}{2} E^{*} \sqrt {R^{*} } \Delta \tau^{2} {\varvec{T}}_{k,n} \left( {{\varvec{M}} + \frac{1}{4}{\varvec{K}}\Delta \tau^{2} } \right)^{ - 1} {\varvec{T}}_{k,n}^{T} \left( {u_{k,p,n,s + 1}^{\left( j \right)} - u_{k,b,n,s + 1}^{\left( j \right)} } \right)_{ + }^{1/2}$$
(29a)
$$- \frac{1}{2} \mu k_{s} \left| {N_{k,s + 1}^{\left( j \right)} } \right| \Delta \tau { T}_{k,t} \left( {{\varvec{M}} + \frac{1}{4}{\varvec{K}}\Delta \tau^{2} } \right)^{ - 1} {\varvec{T}}_{k,t}^{T} {\text{cosh}}\left[ {k_{s} \left( {v_{k,p,t,s + 1}^{\left( j \right)} - v_{k,b,t,s + 1}^{\left( j \right)} } \right)} \right]^{ - 2}$$
(29b)

Accordingly, the local map is stable if the moduli of both eigenvalues are smaller than unity, which gives the conditions (27a, b).

Appendix 2

Below we provide links for the following animations for the acoustics of:

The monolithic plate of Fig. 11a subject to a uniform impulse of \(1\,\upmu {\text{s}}\) and \(20000\;{\text{N/m}}\) intensity https://uofi.box.com/s/13ia09hrmnsctw2tl5xm47p6te78qzby

The granular-solid interface of Fig. 11c with uniform initial velocities \(v_{0} = 0.3414\,{\text{m/s}}\) of its five left granules, corresponding to the same energy input to case (i) for the monolithic plate https://uofi.box.com/s/tvxsuqehqfhgs1w8ype4s89tcwve0qly

The granular-solid interface of Fig. 11c with uniform initial velocities \(v_{0} = 0.5\,{\text{m/s}}\) and \(v_{0} = 1.0\;{\text{m/s}}\) of its five left granules https://uofi.box.com/s/xi8hp6zzz61ofanvy6iq102t8e00h9lv, https://uofi.box.com/s/5ck6xjbnhac76t6bf0d044zdwikgxot2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhang, Q. & Vakakis, A.F. Wave transmission in 2D nonlinear granular-solid interfaces, including rotational and frictional effects. Granular Matter 23, 21 (2021). https://doi.org/10.1007/s10035-021-01093-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01093-7

Keywords

Navigation