Skip to main content
Log in

Prediction of inter-particle capillary forces for non-perfectly wettable granular assemblies

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

At a moisture content that corresponds to the so-called pendular regime, granular assemblies are subjected to the development of inter-particle capillary forces. These forces provide a tensile resistance at the particle level, which results into a cohesion shear strength at the macroscopic scale. Granular assemblies with non-perfectly wettable particles show a non-zero contact angle between the liquid bridge and the particle surface. It is worth mentioning that such an angle is an intrinsic property of the particle pair in contact and the liquid bridge. Its value has a significant effect on the magnitude of the capillary force and its behaviour as a function of the particle separation distance. This study is mainly motivated by the large range of values of the contact angle observed experimentally. In this paper, the governing equations for non-perfectly wettable granular assemblies in the pendular regime are first developed using the toroidal approximation. A robust numerical procedure is then proposed to solve these equations. Experimental validation of the numerical model shows that the capillary forces are predicted with a very good accuracy. The influence of the contact angle on the predicted inter-particle capillary force is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haines, W.B.: Studies in the physical properties of soils: II. A note on the cohesion developed by capillary forces in an ideal soil. J. Agric. Sci. 15, 529–535 (1925). doi:10.1017/S0021859600082460

    Article  Google Scholar 

  2. Haines, W.B.: Studies in the physical properties of soils: IV. A further contribution to the theory of capillary phenomena in soil. J. Agric. Sci. 17, 264–290 (1927). doi:10.1017/S0021859600018499

    Article  Google Scholar 

  3. Fisher, R.A.: On the capillary forces in an ideal soil. J. Agric. Sci. 16, 492–505 (1926). doi:10.1017/S0021859600007838

    Article  Google Scholar 

  4. Fisher, R.A.: Further note on the capillary forces in an ideal soil. J. Agric. Sci. 18, 406–410 (1928). doi:10.1017/S0021859600019432

    Article  Google Scholar 

  5. Carman, P.C.: Properties of capillary-held liquids. J. Phys. Chem. 57(1), 56–64 (1953). doi:10.1021/j150502a012

    Article  Google Scholar 

  6. Rose, W.J.: Volumes and surface areas of pendular rings. J. Appl. Phys. 29, 687–691 (1958). doi:10.1063/1.1723251

  7. Mason, G., Clark, W.C.: Liquid bridges between spheres. Chem. Eng. Sci. 20, 859–866 (1965). doi:10.1016/0009-2509(65)80082-3

  8. Lian, G.P., Thornton, C., Adams, M.J.: A theoretical study of the liquid bridge forces between two rigid spherical bodies. J. Colloid Interface Sci. 161, 138–147 (1993). doi:10.1006/jcis.1993.1452

    Article  Google Scholar 

  9. Willet, C.D., Adams, M.J., Johnson, S.A., Seville, J.P.K.: Capillary bridges between two spherical bodies. Langmuir 16, 9396–9405 (2000). doi:10.1021/la000657y

    Article  Google Scholar 

  10. Schwarze, R., Gladkyy, A., Uhlig, F., Luding, S.: Rheology of weakly wetted granular materials: a comparison of experimental and numerical data. Granul. Matter 15, 455–465 (2013). doi:10.1007/s10035-013-0430-z

    Article  Google Scholar 

  11. Harireche, O., Faramarzi, A., Alani, A.M.: A toroidal approximation of capillary forces in polydisperse granular assemblies. Granul. Matter 15, 573–581 (2013). doi:10.1007/s10035-013-0425-9

    Article  Google Scholar 

  12. Rabinovich, Y.I., Esayanur, M.S., Moudgil, B.M.: Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment. Langmuir 21, 10992–10997 (2005). doi:10.1021/la0517639

    Article  Google Scholar 

  13. Willet, C.D., Adams, M.J., Johnson, S.A., Seville, J.P.K.: Effects of wetting hysteresis on pendular liquid bridges between rigid spheres. Powder Technol. 130, 63–69 (2003). doi:10.1016/S0032-5910(02)00235-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asaad Faramarzi.

Appendices

Appendix 1

Expressions of functions \(f_a \), \(a=1,\ldots ,5\), involved in Eqs.  710 and 14.

$$\begin{aligned}&f_1 (\varvec{X})=(x_A -\xi )^{2}+(y_A -\eta )^{2}-\rho ^{2}\\&f_2 (\varvec{X})=(x_B -\xi )^{2}+(y_B -\eta )^{2}-\rho ^{2}\\&f_3 (\varvec{X})=(s\xi -c\eta )x_A +(c\xi +s\eta )y_A -s\\&f_4 (\varvec{X})=(sL+s\xi +c\eta )x_B \\&\qquad \qquad \quad +\,(cL-c\xi +s\eta )y_B -L(s\xi +c\eta )-s\\&f_5 (\varvec{X})=\pi \left[ {F_v (x_B )-F_v (x_A )} \right] -V_A^*-V_B^*-V_w^*\end{aligned}$$

In the expressions above, \(F_v (x)\), \(V_I^*,I=A,B\) and \(V_w^*\) are defined by (15), (12) and (2), respectively. The parameters c and s correspond to \(\cos (\theta )\) and \(\sin (\theta )\), respectively.

Appendix 2

Expression of the components of the Jacobian matrix defined by Eq. 18.

$$\begin{aligned}&J_{11} =2\frac{x_A }{y_A }\eta -2\xi ; \quad J_{12} =0; \quad J_{13} =2\left( {\xi -x_A } \right) ; \\&J_{14} =2\left( {\eta -y_A } \right) ; \quad J_{15} =-2\rho ;\\&vJ_{21} =0; \quad J_{22} =-2\eta \left( {\frac{L-x_B }{y_B }} \right) -2\xi +2L; \\&J_{23} =2\left( {\xi -x_B } \right) ; \quad J_{24} =2\left( {\eta -y_B } \right) ; \quad J_{25} =-2\rho ;\\&J_{31} =\left( {s\xi -c\eta } \right) -\left( {c\xi +s\eta } \right) \frac{x_A }{y_A }; \\&J_{32} =0; \quad J_{33} =sx_A +cy_A ; \quad J_{34} =-cx_A +sy_A ;\\&J_{35} =0;\\&J_{41} =0; \quad J_{42} =\left( {cL-c\xi +s\eta } \right) \left( {\frac{L-x_B }{y_B }} \right) \\&\qquad \quad +\,\left( {sL+s\xi +c\eta } \right) ; \quad J_{43} =sx_B -cy_B -Ls;\\&J_{44} =cx_B +sy_B -Lc; \quad J_{45} =0;\\&J_{51} =0; \quad J_{52} =0; \quad J_{53} =\pi \left( {y_B -y_A } \right) \left( {y_B +y_A -4\eta } \right) ;\\&J_{54} =\pi \left[ {x_B \left( {\eta +y_B } \right) -x_A \left( {\eta +y_A } \right) -\xi \left( {y_B -y_A } \right) } \right] \\&\qquad \quad +\,\pi \rho ^{2}\left[ {\arctan \left( {\frac{x_B -\xi }{y_B -\eta }} \right) -\arctan \left( {\frac{x_A -\xi }{y_A -\eta }} \right) } \right] \\&J_{55} =2\pi \rho \left[ {x_B -x_A } \right] \\&\qquad \quad +\,2\pi \rho \eta \left[ {\arctan \left( {\frac{x_B -\xi }{y_B -\eta }} \right) -\arctan \left( {\frac{x_A -\xi }{y_A -\eta }} \right) } \right] . \end{aligned}$$

Appendix 3

Algorithm for the numerical procedure to solve Eqs.  710 and 14.

  1. (1)

    Obtain \(\varvec{X}^{(1)}\)using the secant procedure proposed in Harireche et al. [11] and set \(\varvec{X}^{(0)}=\varvec{X}^{(1)}\)

  2. (2)

    Set increment counter to zero: \(\textit{inc}=0\)

  3. (3)

    Perform a new increment: \(\textit{inc}\leftarrow \textit{inc}+1\)

  4. (4)

    Set iteration counter to zero: \(i=0\)

  5. (5)

    Perform a new iteration: \(i\leftarrow i+1\)

  6. (6)

    Obtain \(\Delta \varvec{X}\)by solving: \(\sum \nolimits _{b=1}^5 {J_{ab} } (\varvec{X}^{(i-1)})\Delta X_b =f_a (\varvec{X}^{(i-1)})\), \(a=1,\ldots ,5\)

  7. (7)

    Obtain \(f_a (\varvec{X}^{(i)})=f_a (\varvec{X}^{(i-1)}+\Delta \varvec{X})\), \(a=1,\ldots ,5\)

  8. (8)

    Check convergence: \(\left\| \varvec{F} \right\| <Tol\); where \(\varvec{F}^{T}=(f_1 (\varvec{X}^{(i)}),\ldots ,f_5 (\varvec{X}^{(i)}))\) and Tol is typically \(10^{-6}\).

  9. (9)

    If (convergence) Then set \(\varvec{X}^{(0)}=\varvec{X}^{(i)}\) and Go to (3) Else Goto (5)

  10. (10)

    END

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harireche, O., Faramarzi, A. & Alani, A.M. Prediction of inter-particle capillary forces for non-perfectly wettable granular assemblies. Granular Matter 17, 537–543 (2015). https://doi.org/10.1007/s10035-015-0581-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-015-0581-1

Keywords

Navigation