Skip to main content
Log in

Grainsize dependence of clastic yielding in unsaturated granular soils

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We use a recent reformulation of the Breakage Mechanics theory explaining comminution in wet granular assemblies. By using a dataset for sands, we quantify the relation between a geometric descriptor of the assembly (i.e., the mean grainsize) and the model constants that control the suction air-entry value and the stress threshold at the onset of crushing. Such relations are used to define two contrasting scenarios for the coupling between degree of saturation and yielding. In the first scenario, the suction air-entry value scales inversely with the mean grainsize, while the energy input for comminution is assumed to be independent of the size of the particles. The outcome of this assumption is that changes in degree of saturation are predicted to play a more intense role in finer gradings. Conversely, if we assume that also the energy input for grain breakage scales inversely with the size of the particles, the effect of the degree of saturation is predicted to be stronger in coarser assemblies. In other words, the deterioration of the yielding stress due to grainsize scaling effects is predicted to exacerbate the water sensitivity of unsaturated crushable soils. This result provides an interpretation for the evidence that solid–fluid interactions have a noticeable role in the compression response of assemblies made of coarse brittle particles (e.g., gravels or rockfill), while they tend to play little or no role in granular materials characterized by a finer grading (e.g., sands).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Nakata, Y., Kato, Y., Hyodo, M., Hyde, A.F., Murata, H.: One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength. Soils Found. 41(2), 39–51 (2001)

    Article  Google Scholar 

  2. Lade, P.V., Yamamuro, J.A., Bopp, P.A.: Significance of particle crushing in granular materials. J. Geotech. Eng. 122(4), 309–316 (1996)

    Article  Google Scholar 

  3. Hardin, B.O.: Crushing of soil particles. J. Geotech. Eng. 111(10), 1177–1192 (1985)

    Article  Google Scholar 

  4. Chuhan, F.A., Kjeldstad, A., Bjørlykke, K., Høeg, K.: Experimental compression of loose sands: relevance to porosity reduction during burial in sedimentary basins. Can. Geotech. J. 40(5), 995–1011 (2003)

    Article  Google Scholar 

  5. Zoback, M.D., Byerlee, J.D.: Effect of high-pressure deformation on permeability of ottawa sand. AAPG Bull. 60(9), 1531–1542 (1976)

    Google Scholar 

  6. Papamichos, E., Vardoulakis, I., Ouadfel, H.: Permeability reduction due to grain crushing around a perforation. Int. J. Rock Mech. Min. Sci. abstr. 30, 1223–1229 (1993)

    Article  Google Scholar 

  7. DeJong, J.T., Christoph, G.G.: Influence of particle properties and initial specimen state on one-dimensional compression and hydraulic conductivity. J. Geotech. Geoenviron. Eng. 135(3), 449–454 (2009)

    Article  Google Scholar 

  8. Arya, L.M., Paris, J.F.: A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci. Soc. Am. J. 45(6), 1023–1030 (1981)

    Article  Google Scholar 

  9. Yang, H., Rahardjo, H., Leong, E.C., Fredlund, D.G.: Factors affecting drying and wetting soil–water characteristic curves of sandy soils. Can. Geotech. J. 41(5), 908–920 (2004)

    Article  Google Scholar 

  10. Jamei, M., Guiras, H., Chtourou, Y., Kallel, A., Romero, E., Georgopoulos, I.: Water retention properties of perlite as a material with crushable soft particles. Eng. Geol. 122(3), 261–271 (2011)

    Article  Google Scholar 

  11. Alonso, E.E., Gens, A., Josa, A.: A constitutive model for partially saturated soils. Géotechnique 40(3), 405–430 (1990)

    Article  Google Scholar 

  12. Gallipoli, D., Gens, A., Sharma, R., Vaunat, J.: An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour. Géotechnique 53(1), 123–136 (2003)

    Article  Google Scholar 

  13. Gens, A.: Soil-environment interactions in geotechnical engineering. Géotechnique 60(1), 3–74 (2010)

    Article  Google Scholar 

  14. Oldecop, L.A., Alonso, E.E.: A model for rockfill compressibility. Géotechnique 51(2), 127–139 (2001)

    Article  Google Scholar 

  15. Oldecop, L.A., Alonso, E.E.: Suction effects on rockfill compressibility. Géotechnique 2, 289–292 (2003)

    Article  Google Scholar 

  16. Alonso, E.E., Olivella, S., Hugas, J.: Modelling the behaviour of an earth and rockfill dam during construction and impoundment. Unsat. Soils: Numer. and Theor. Approach., pp. 269–287. (2005)

  17. Heath, A.C., Pestana, J.M., Harvey, J.T., Bejerano, M.O.: Normalizing behavior of unsaturated granular pavement materials. J. Geotech. Geoenviron. Eng. 130(9), 896–904 (2004)

    Article  Google Scholar 

  18. Frey, R.G., Halloran, J.: Compaction behavior of spray-dried alumina. J. Am. Ceram. Soc. 67(3), 199–203 (1984)

    Article  Google Scholar 

  19. Nieuwmeyer, F.J., van der Voort Maarschalk, K., Vromans, H.: Granule breakage during drying processes. Int. J. Pharm. 329(1), 81–87 (2007)

    Article  Google Scholar 

  20. Maatouk, A., Leroueil, S., La Rochelle, P.: Yielding and critical state of a collapsible unsaturated silty soil. Géotechnique 45(3), 465–477 (1995)

    Article  Google Scholar 

  21. Cui, Y., Delage, P.: Yielding and plastic behaviour of an unsaturated compacted silt. Géotechnique 46(2), 291–311 (1996)

    Article  Google Scholar 

  22. Romero, E., Della Vecchia, G.: An insight into the water retention properties of compacted clayey soils. Géotechnique 61(4), 313–328 (2011)

    Article  Google Scholar 

  23. Oldecop, L.A., Alonso, E.E.: Theoretical investigation of the time-dependent behaviour of rockfill. Géotechnique 57(3), 289–301 (2007)

    Article  Google Scholar 

  24. Chávez, C., Alonso, E.E.: A constitutive model for crushed granular aggregates which includes suction effects. Soils Found. 43(4), 215–227 (2003)

    Article  Google Scholar 

  25. Soulie, F., Cherblanc, F., El Youssoufi, M.S., Saix, C.: Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials. Int. J. Numer. Anal. Methods Geomech. 30(3), 213–228 (2006)

    Article  MATH  Google Scholar 

  26. Richefeu, V., El Youssoufi, M.S., Radjai, F.: Shear strength properties of wet granular materials. Phys. Rev. E 73(5), 051,304 (2006)

    Article  Google Scholar 

  27. Alonso, E.E. and Romero, E.: Collapse behaviour of sand. Proc. Of the 2nd Asian Conf. on Unsat. Soils (2003)

  28. Houlsby, G.: The work input to an unsaturated granular material. Géotechnique 47(1), 193–196 (1997)

    Article  Google Scholar 

  29. Gili, J.A., Alonso, E.E.: Microstructural deformation mechanisms of unsaturated granular soils. Int. J. Numer. Anal. Methods Geomech. 26(5), 433–468 (2002)

    Article  MATH  Google Scholar 

  30. Li, X.S.: Effective stress in unsaturated soil: a microstructural analysis. Géotechnique 53(2), 273–277 (2003)

    Article  Google Scholar 

  31. Scholtès, L., Chareyre, B., Nicot, F., Darve, F.: Micromechanics of granular materials with capillary effects. Int. J. Eng. Sci. 47(1), 64–75 (2009)

    Article  MATH  Google Scholar 

  32. Fisher, R.: On the capillary forces in an ideal soil; correction of formulae given by wb haines. J. Agric. Sci. 16(03), 492–505 (1926)

    Article  Google Scholar 

  33. Oda, M., Iwashita, K.: Mechanics of granular materials: an introduction. A.A.Balkema, Rotterdam (1999)

  34. Einav, I.: Breakage mechanicspart I: theory. J. Mech. Phys. Solids 55(6), 1274–1297 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Einav, I.: Breakage mechanicsł part II: modelling granular materials. J. Mech. Phys. Solids 55(6), 1298–1320 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Einav, I.: Fracture propagation in brittle granular matter. Proc. Roy. Soc. Lond. Ser. A 463(2087), 3021–3035 (2007)

    Article  ADS  Google Scholar 

  37. Buscarnera, G., Einav, I.: The yielding of brittle unsaturated granular soils. Géotechnique 62(2), 147–160 (2012)

    Article  Google Scholar 

  38. Collins, I.F., Houlsby, G.T.: Application of thermomechanical principles to the modelling of geotechnical materials. Proc. Roy. Soc. Lond. Ser. A 453(1964), 1975–2001 (1997)

    Article  ADS  MATH  Google Scholar 

  39. McDowell, G.R., Bolton, M.D.: On the micromechanics of crushable aggregates. Géotechnique 48(5), 667–679 (1998)

    Article  Google Scholar 

  40. Nguyen, G.D., Einav, I.: The energetics of cataclasis based on breakage mechanics. Pure Appl. Geophys. 166(10–11), 1693–1724 (2009)

    Article  ADS  Google Scholar 

  41. Einav, I., Puzrin, A.: Pressure-dependent elasticity and energy conservation in elastoplastic models for soils. J. Geotech. Geoenviron. Eng. 130(1), 81–92 (2004)

    Article  Google Scholar 

  42. Lloret, A., Alonso, E.E.: Consolidation of unsaturated soils including swelling and collapse behaviour. Géotechnique 30(4), 449–477 (1980)

    Article  Google Scholar 

  43. Flavigny, E., Desrues, J., Palayer, B.: Note technique-le sable d’hostun “rf”. Revue française de géotechnique 53 (1990)

  44. Daouadji, A., Hicher, P.Y., Rahma, A.: An elastoplastic model for granular materials taking into account grain breakage. Eur. J. Mech. A-Solid 20(1), 113–137 (2001)

    Article  MATH  Google Scholar 

  45. Lins, Y., Schanz, T.: Determination of hydro-mechanical properties of sand. Unsat. Soils: Exp. Studies, pp. 15–32. (2005)

  46. Lloret, A., Villar, M.V., Snchez, M., Gens, A., Pintado, X., Alonso, E.E.: Mechanical behaviour of heavily compacted bentonite under high suction changes. Géotechnique 53(1), 27–40 (2003)

    Article  Google Scholar 

  47. Loret, B., Khalili, N.: An effective stress elastic–plastic model for unsaturated porous media. Mech. Mater. 34(2), 97–116 (2002)

    Article  Google Scholar 

  48. Gens, A., Sánchez, M., Sheng, D.: On constitutive modelling of unsaturated soils. Acta Geotech. 1(3), 137–147 (2006)

    Google Scholar 

  49. Terzaghi, K., Peck, R., Mesri, G.: Soil Mechanics in Engineering Practice. Wiley, New York (1996)

    Google Scholar 

  50. Kovács, G.: Seepage Hydraulics. Elsevier, Amsterdam (1981)

    Google Scholar 

  51. Stormont, J.C., Anderson, C.E.: Capillary barrier effect from underlying coarser soil layer. J. Geotech. Geoenviron. Eng. 125(8), 641–648 (1999)

    Article  Google Scholar 

  52. Aubertin, M., Mbonimpa, M., Bussière, B., Chapuis, R.: A model to predict the water retention curve from basic geotechnical properties. Can. Geotech. J. 40(6), 1104–1122 (2003)

    Article  Google Scholar 

  53. Einav, I.: Fracture propagation in brittle granular matter. Proc. Roy. Soc. Lond. Ser. A 463(2007), 3021–3035 (2007)

    Article  ADS  Google Scholar 

  54. Lee, D.M.: The angles of friction of granular fills. Ph.D. thesis, Cambridge University (1992)

  55. Bruch, P.: A laboratory study of evaporative fluxes in homogeneous and layered soils. M.sc. thesis, University of Sas- katchewan, Saskatoon, Saskatchewan (1993)

  56. De Souza, J.: Compressibility of quartz sand at high pressure. M.sc. thesis, Massachusetts Institute of Technology, Cambridge, Mass. (1958)

  57. Fredlund, M.D., Fredlund, D.G., Wilson, G.: Prediction of the soil-water characteristic curve from grain-size distribution and volume–mass properties. In: Proc., 3rd Brazilian Symp. on Unsat. Soils, vol. 1, pp. 13–23. Rio de Janeiro (1997)

  58. Indrawan, I., Rahardjo, H., Leong, E.C.: Effects of coarse-grained materials on properties of residual soil. Eng. Geol. 82(3), 154–164 (2006)

    Article  Google Scholar 

  59. Lee, K.L., Farhoomand, I.: Compressibility and crushing of granular soil in anisotropic triaxial compression. Can. Geotech. J. 4(1), 68–86 (1967)

    Article  Google Scholar 

  60. Lirer, S., Flora, A., Nicotera, M.: Some remarks on the coefficient of earth pressure at rest in compacted sandy gravel. Acta Geotech. 6(1), 1–12 (2011)

    Article  Google Scholar 

  61. MacKay, P.L.: Evaluation of oxygen diffusion in unsaturated soils. M.sc. thesis, The University of Western Ontario (1997)

  62. Morii, T., Inoue, M., Kadoguchi, R.: Effective water harvesting using capillary barrier of unsaturated soils. Unsat. Soils: Theor. Pract. pp. 857–860 (2011)

  63. Nakata, Y., Hyodo, M., Hyde, A.F., Kato, Y., Murata, H.: Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soils Found. 41(1), 69–82 (2001)

    Article  Google Scholar 

  64. Pestana, J.M., Whittle, A.: Compression model for cohesionless soils. Géotechnique 45(4), 611–631 (1995)

    Article  Google Scholar 

  65. Roberts, J.E., De Souza, J.M.: The compressibility of sands. P. Am. Soc. Test Mater. 58(4), 1269–1272 (1958)

    Google Scholar 

  66. Sydor, R.: Engineered mine tailings cover: verification of drainage behaviour and investigations of design. M.sc. thesis, University of Waaterloo (1992)

Download references

Acknowledgments

This work has been initiated under a booster fund granted by the Institute of Sustainability and Energy at Northwestern (ISEN) and has been partially supported by grant No. CMMI-1351534 awarded by the Geomechanics and Geomaterials program of the U.S. National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Buscarnera.

Appendices

Appendix A: Grading indices for uniform grainsize distributions

If the probability for a given particle of size \(x\) to exist within the interval \((D_m, D_M)\) is assumed to be constant:

$$\begin{aligned} p\left( x \right) = \frac{1}{{{D_M} - {D_m}}} \end{aligned}$$
(20)

it is possible to show that the corresponding cumulative grain size distribution by number is given by:

$$\begin{aligned} F\left( x \right) = \int \limits _{{D_m}}^x {p\left( y \right) } dy = \frac{{x - {D_m}}}{{{D_M} - {D_m}}} \end{aligned}$$
(21)

By further assuming that the mass of each particle \(x\) is proportional to \(x^3\), the cumulative GSD by mass is can be derived as

$$\begin{aligned} {F^*}\left( x \right) = \frac{{\int _{{D_m}}^x {p\left( y \right) } {y^3}dy}}{{\int _{{D_m}}^{{D_M}} {p\left( y \right) } {y^3}dy}} = \frac{{{x^4} - {D_m}^4}}{{{D_M}^4 - {D_m}^4}} \end{aligned}$$
(22)

Then the corresponding probability density function by mass can be derived as

$$\begin{aligned} g\left( x \right) = \frac{{d{F^*}\left( x \right) }}{{dx}} = \frac{{4{x^3}}}{{{D_M}^4 - {D_m}^4}} \end{aligned}$$
(23)

Equation (22) shows good agreement with the initial grading of the commercial sands such as Hostun sand, as shown in Fig.  2. As far as the probability density function of the GSD at complete breakage, it is possible to use the expression suggested by Einav (2007a):

$$\begin{aligned} {g_u}\left( x \right) = \frac{{(3 - \alpha ){x^{2 - \alpha }}}}{{{D_M}^{3 - \alpha } - {D_m}^{3 - \alpha }}} \end{aligned}$$
(24)

where \(\alpha \) is the fractal dimension (usually set to be 2.7). It is interesting to note that Eq. (23) is a particular case of equation Eq. (24), obtained by setting \(\alpha \) equal to \(-1\).

The grading indices associated with the previously defined GSD curves can be expressed as:

$$\begin{aligned} {\vartheta _M}&= 1 - \frac{{\int _{{D_m}}^{{D_M}} {{g_u}\left( x \right) {x^2}} dx}}{{\int _{{D_m}}^{{D_M}} {{g_0}\left( x \right) {x^2}} dx}} \nonumber \\&= 1 \!-\! \frac{3}{2}\left( {\frac{{3 \!-\! \alpha }}{{5 \!- \!\alpha }}} \right) \left( {\frac{{{D_M}^4 \!-\! {D_m}^4}}{{{D_M}^6 \!-\! {D_m}^6}}} \right) \left( {\frac{{{D_M}^{5 \!-\! \alpha } \!- \!{D_m}^{5 - \alpha }}}{{{D_M}^{3 - \alpha } \!-\! {D_m}^{3 - \alpha }}}} \right) \nonumber \\ \end{aligned}$$
(25a)
$$\begin{aligned} {\vartheta _H}&= \frac{{\int _{{D_m}}^{{D_M}} {{g_u}\left( x \right) {x^{ - 1}}} dx}}{{\int _{{D_m}}^{{D_M}} {{g_0}\left( x \right) {x^{ - 1}}} dx}} - 1 \nonumber \\&= \frac{3}{4}\left( {\frac{{3 {-} \alpha }}{{2 {-} \alpha }}} \right) \left( {\frac{{{D_M}^4 - {D_m}^4}}{{{D_M}^3 - {D_m}^3}}} \right) \left( {\frac{{{D_M}^{2 - \alpha } {-} {D_m}^{2 - \alpha }}}{{{D_M}^{3 - \alpha }{-} {D_m}^{3 - \alpha }}}} \right) {-}1\nonumber \\ \end{aligned}$$
(25b)

Both indices can be determined by specifing the maximum and minimum particle size (the latter being usually assumed to be 1 mm). In particular, by using Eq. (22) it is possible to express the maximum grainsize \(D_M\) as a function of the mean grainsize \(D_{50}\), as follows:

$$\begin{aligned} {D_M} = {\left( {2{D_{50}}^4 - {D_m}^4} \right) ^{1/4}} \end{aligned}$$
(26)

As a result, the two grading indices given in Eq. (25) can be plotted as a function of \(D_{50}\) (1).

Appendix B: Yield stress upon one-dimensional compression

The vertical stress associated with the onset of comminution upon one-dimensional compression, \({\left( {{\sigma ' _V}} \right) _{CR_{0}}}\) can be computed by enforcing the yielding condition for a \(K_0\) compression path. In this case, the stress path implies that \(q = 3\left( {1 - {K_0}} \right) p'/\left( {1 + 2{K_0}} \right) \) or \({\sigma _v}' = 3p'/\left( {1 + 2{K_0}} \right) \) . Substituting these relations in Eq. (6), the yield stress for a saturated linear elastic medium is given by:

$$\begin{aligned} {\left( {{\sigma _V}'} \right) _{CR _{0}}} = \frac{3}{{1 + 2{K_0}}}\sqrt{\frac{{2{E_c}\left( {1 - \frac{{{\eta _{K0}}^2}}{{{M^2}}}} \right) }}{{{\vartheta _M}\left( {\frac{1}{K} + \frac{{{\eta _{K0}}^2}}{{3G}}} \right) }}} \end{aligned}$$
(27)

where \({\eta _{K0}} = {{3\left( {1 - {K_0}} \right) } \mathord {\Big /} {\left( {1 + 2{K_0}} \right) }}\). In the case of pressure-dependent elasticity, the yield function can be obtained by combining Eqs.  (5),(6) and (11):

$$\begin{aligned}&\frac{{{\vartheta _M}{{\left( {1 \!-\! B} \right) }^2}}}{{{E_c}}}\left[ {\frac{{{p_r}}}{{\bar{K}\left( {2 - m} \right) }}\frac{{\zeta {{\left( {p',q} \right) }^{2 - m}}}}{{{{\left( {1 - {\vartheta _M}B} \right) }^{2 - m}}}} \!+ \!\frac{{{q^2}}}{{6{p_r}\bar{G}}}\frac{{\zeta {{\left( {p',q} \right) }^{ - m}}}}{{{{\left( {1 - {\vartheta _M}B} \right) }^2}}}} \right] \nonumber \\&+ {\left( {\frac{q}{{Mp'}}} \right) ^2} \le 1 + \frac{{{\vartheta _H}}}{{{E_c}}}\psi _r^H\left( {{S_r}} \right) {\left( {1 - B} \right) ^2} \end{aligned}$$
(28)

where

$$\begin{aligned} \zeta \left( {p',q} \right) = \frac{{p'}}{{2{p_r}}} + \sqrt{{{\left( {\frac{{p'}}{{2{p_r}}}} \right) }^2} - \frac{{\bar{K}m}}{{6\bar{G}}}{{\left( {\frac{q}{{{p_r}}}} \right) }^2}} \end{aligned}$$
(29)

The \(\left( {{\sigma ' _V}} \right) _{CR_{0}}\) for pressure-dependent elasticity can again be obtained by assuming a \(K_0\) compression path, as follows:

$$\begin{aligned} {\left( {{\sigma _V}'} \right) _{C{R_{0}}}} = \frac{3}{{1 + 2{K_0}}}{\left[ {\frac{{{E_c}\left( {1 - \frac{{{\eta _{K0}}^2}}{{{M^2}}}} \right) }}{{{\vartheta _M}\left( {\frac{{{p_r}{\zeta _{K0}}^{2 - m}}}{{\bar{K}\left( {2 - m} \right) }} + \frac{{{\eta _{K0}}^2{\zeta _{K0}}^{ - m}}}{{6{p_r}\bar{G}}}} \right) }}} \right] ^{\frac{1}{2-m}}}\nonumber \\ \end{aligned}$$
(30)

where

$$\begin{aligned} {\zeta _{K0}} = \frac{{\zeta \left( {p',q} \right) }}{{p'}} = \frac{1}{{2{p_r}}} + \sqrt{{{\left( {\frac{1}{{2{p_r}}}} \right) }^2} - \frac{{\bar{K}m{\eta _{K0}}^2}}{{6\bar{G}{p_r}^2}}} \end{aligned}$$
(31)

The above relations have been used to identify the optimal values of \(E_c\) allowing the mathematical capture of numerous compression experiments available in the literature (Fig. 13).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y.D., Buscarnera, G. Grainsize dependence of clastic yielding in unsaturated granular soils. Granular Matter 16, 469–483 (2014). https://doi.org/10.1007/s10035-014-0491-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-014-0491-7

Keywords

Navigation