Skip to main content
Log in

Shear strength of unsaturated granular soils: three-dimensional discrete element analyses

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

To investigate the shear strength behavior of unsaturated granular soils, the three-dimensional discrete element method has been used to model soils in triaxial compression tests. A simple but effective contact model with an attractive capillary force was implemented. The effects of matric suction and packing density on shear strength of unsaturated granular assemblies were examined. The Mohr–Coulomb strength parameters (apparent cohesion and friction angle) were fitted for each matric suction examined. The results show that matric suction can increase the strength and modulus of granular soils and lead to increased dilation. The peak friction angle depends on the packing density but seems independent of matric suction. The apparent cohesion increases with matric suction non-linearly at a decreasing rate. Similar values of cohesion were observed for both dense and loose assemblies, which can be explained by the anisotropic distribution of capillary force network. Based on the microscopic observations, the stress-induced anisotropy of contact distributions leads to an anisotropic distribution of capillary water and, as a consequence, the capillary stress is anisotropic, imposing a shear effect on an assembly in parallel with that imposed by the externally applied loading. Consequently, the strength of unsaturated granular soil is controlled by the combined effects of packing density, and the magnitude and degree of anisotropy of the capillary stress. A new shear strength function for unsaturated soils, considering the anisotropic effects of matric suction, is proposed and validated using experimental data in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Terzaghi, K.: The shear resistance of saturated soils. In: Proceedings of 1st International Conference on Soil Mechanics and Foundation Engineering, vol. 1, pp. 54–56 (1936)

  2. Fredlund, D.G., Rahardjo, H.: Soil Mechanics for Unsaturated Soils. Wiley, New York (1993)

    Book  Google Scholar 

  3. Bishop, A.W., Blight, G.E.: Some aspects of effective stress in saturated and partly saturated soils. Géotechnique 13(3), 177–197 (1963)

    Article  Google Scholar 

  4. Fredlund, D.G., Morgenstem, N.R., Widger, R.A.: The shear strength of unsaturated soils. Can. Geotech. J. 15, 313–321 (1978)

    Article  Google Scholar 

  5. Fredlund, D.G., Xing, A.: Equations for the soil–water characteristic curve. Can. Geotech. J. 31, 517–532 (1994)

    Google Scholar 

  6. Rohm, S.A., Vila, O.M.: Shear strength of an unsaturated sandy soil. In: Proceedings of 1st International Conference on Unsaturated Soils, vol. 1, p. 189 (1995)

  7. Fredlund, D.G., Xing, A., Fredlund, M.D., Barbour, S.L.: The relationship of the unsaturated soil shear strength to the soil–water characteristic curve. Can. Geotech. J. 33, 440–448 (1996)

    Article  Google Scholar 

  8. Vanapalli, S.K., Fredlund, D.G., Pufahl, D.E., Clifton, A.W.: Model for the prediction of shear strength with respect to soil suction. Can. Geotech. J. 33, 379–392 (1996)

    Article  Google Scholar 

  9. Oberg, A., Sallfors, G.: Determination of shear strength parameters of unsaturated silts and sands based on the water retention curve. Geotech. Test. J. 20(1), 40–48 (1997)

    Article  Google Scholar 

  10. Khatlili, N., Khabbaz, M.H.: A unique relationship for the determination of the shear strength of unsaturated soils. Géotechnique 48(5), 681–687 (1998)

    Article  Google Scholar 

  11. Vanapalli, S.K., Fredlund, D.G.: Comparison of different procedures to predict unsaturated soil shear strength. In: Shackleford, C., Houston, S.L., Chang, N.-Y. (eds.) Advances in unsaturated geotechnics, Geotechnical Special Publication 99, pp. 195–209. ASCE (2000). doi:10.1061/40510(287)13

  12. Kim, W.S., Borden, R.H.: Influence of soil type and stress state on predicting shear strength of unsaturated soils using the soil–water characteristic curve. Can. Geotech. J. 48(12), 1886–1900 (2011)

    Article  Google Scholar 

  13. Sheng, D.C., Zhou, A., Fredlund, D.G.: Shear strength criteria for unsaturated soils. Geotech. Geol. Eng. 29(2), 145–159 (2011)

    Article  Google Scholar 

  14. Nimmo, J.R.: Modeling structural influences on soil water retention. Soil Sci. Soc. Am. J. 61, 712–719 (1997)

    Article  Google Scholar 

  15. Vanapalli, S.K., Fredlund, D.G., Pufahl, D.E.: The influence of soil structure and stress history on the soil–water characteristics of a compacted till. Géotechnique 49, 143–159 (1999)

    Article  Google Scholar 

  16. Lee, I.M., Sung, S.G., Cho, G.C.: Effect of stress state on the unsaturated shear strength of a weathered granite. Can. Geotech. J. 42(2), 624–631 (2005)

    Article  Google Scholar 

  17. Fredlund, M.D., Wilson, G.W., Fredlund, D.G.: Use of the grain-size distribution for estimation of the soil–water characteristic curve. Can. Geotech. J. 39(5), 1103–1117 (2002)

    Article  Google Scholar 

  18. Jiang, M.J., Leroueil, S., Konrad, J.M.: Insight into shear strength functions of unsaturated granulates by DEM analyses. Comput. Geotech. 31(6), 473–489 (2004)

    Article  Google Scholar 

  19. Likos, W.J., Lu, N.: Hysteresis of capillary stress in unsaturated granular soil. J. Eng. Mech. 130(6), 646–655 (2004)

    Article  Google Scholar 

  20. Wan, R., Khosravani, S., Nicot, F.: Micromechanical analysis of stress in an unsaturated granular medium. In: The 2nd International Symposium on Computational Geomechanics (ComGeo II), Cavtat-Dubrovnik (2011)

  21. Li, X.S.: Effective stress in unsaturated soil: a microstructural analysis. Géotechnique 53, 273–277 (2003)

    Article  Google Scholar 

  22. Molenkamp, F., Nazemi, A.H.: Micromechanical considerations of unsaturated pyramidal packing. Géotechnique 53(2), 195–206 (2003)

    Article  Google Scholar 

  23. Hicher, P.Y., Chang, C.S.: A microstructural elastoplastic model for unsaturated granular materials. Int. J. Solids Struct. 44, 2304–2323 (2007)

    Article  MATH  Google Scholar 

  24. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  25. Oda, M., Iwashita, K.: Mechanics of Granular Materials: An Introduction, pp. 27–35. A. A. Balkema Publishers, Rotterdam (1999)

    Google Scholar 

  26. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)

    Article  MathSciNet  Google Scholar 

  27. Jiang, M.J., Konrad, J.M., Leroueil, S.: An efficient technique for generating homogeneous specimens for DEM studies. Comput. Geotech. 30(7), 579–597 (2003)

    Article  Google Scholar 

  28. Jiang, M.J., Shen, Z.F., Zhu, F.Y.: Numerical analyses of braced excavation in granular grounds: continuum and discrete element approaches. Granul. Matter. 15(2), 195–208 (2013)

  29. Jiang, M.J., Shen, Z.F., Thornton, C.: Microscopic contact model of lunar regolith for high efficiency discrete element analyses. Comput. Geotech. 54, 104–116 (2013)

    Article  Google Scholar 

  30. Gili, J.A., Alonso, E.E.: Microstructural deformation mechanisms of unsaturated granular soils. Int. J. Numer. Anal. Met. Geomech. 26, 433–468 (2002)

    Article  MATH  Google Scholar 

  31. Liu, S.H., Sun, D.A.: Simulating the collapse of unsaturated soil by DEM. Int. J. Numer. Anal. Met. Geomech. 26(6), 633–646 (2002)

    Article  MATH  Google Scholar 

  32. Richefeu, V., El Youssoufi, M.S., Peyroux, R., Radja, F.: A model of capillary cohesion for numerical simulations of 3D polydisperse granular media. Int. J. Numer. Anal. Met. Geomech. 32(11), 1365–1383 (2008)

    Article  MATH  Google Scholar 

  33. Shamy, UEl, Gröger, T.: Micromechanical aspects of the shear strength of wet granular soils. Int. J. Numer. Anal. Met. Geomech. 32(14), 1763–1790 (2008)

    Article  MATH  Google Scholar 

  34. Scholtès, L., Hicher, P.Y., Nicot, F., Chareyre, B., Darve, F.: On the capillary stress tensor in wet granular materials. Int. J. Numer. Anal. Met. Geomech. 33(10), 1289–1313 (2009)

    Article  MATH  Google Scholar 

  35. Radjai, F., Richefeu, V.: Bond anisotropy and cohesion of wet granular materials. Philos. T. R. Soc. A 367(1909), 5123–5138 (2009)

    Article  ADS  Google Scholar 

  36. Zhang, W., Zhao, C.: Micromechanics analysis for unsaturated granular soils. Acta Mech. Solids Sin. 24(3), 273–281 (2011)

    Article  Google Scholar 

  37. Sheng, D.C.: Review of fundamental principles in modelling unsaturated soil behaviour. Comput. Geotech. 38(6), 757–776 (2011)

    Article  Google Scholar 

  38. Fisher, R.A.: On the capillary forces in an ideal soil. J. Agric. Sci. 16, 492–505 (1926)

    Article  Google Scholar 

  39. Harireche, O., Faramarzi, A., Alani, A.M.: A toroidal approximation of capillary forces in polydisperse granular assemblies. Granul. Matter. 15(5), 573–581 (2013)

    Article  Google Scholar 

  40. Lechman, J., Lu, N.: Capillary force and water retention between two uneven-sized particles. J. Eng. Mech. 134(5), 374–384 (2008)

    Article  Google Scholar 

  41. Cho, G.C., Santamarina, J.C.: Unsaturated particulate materials—particle-level studies. J. Geotech. Geoenviron. Eng. (ASCE) 127(1), 84–96 (2001)

    Article  Google Scholar 

  42. Mason, G., Clark, W.C.: Liquid bridges between spheres. Chem. Eng. Sci. 20, 859–866 (1965)

    Article  Google Scholar 

  43. Lian, G., Thornton, C., Adams, M.J.: A theoretical study of the liquid bridge forces between two rigid spherical bodies. J. Colloid Interf. Sci. 161(1), 138–147 (1993)

    Article  Google Scholar 

  44. Itasca Consulting Group Inc. PFC3D (particle flow code in three dimensions). User’s Guide. (2008)

  45. Krahn, J., Fredlund, D.G., Klassen, M.J.: Effect of soil suction on slope stability at Notch Hill. Can. Geotech. J. 26(2), 269–278 (1989)

    Article  Google Scholar 

  46. Rassam, D.W., Williams, D.J.: A relationship describing the shear strength of unsaturated soils. Can. Geotech. J. 36(2), 363–368 (1999)

    Article  Google Scholar 

  47. Schnellmann, R., Rahardjo, H., Schneider, H.R.: Unsaturated shear strength of a silty sand. Eng. Geol. 162, 88–96 (2013)

    Article  Google Scholar 

  48. Escario, V., Saez, J.: The shear-strength of partly saturated soils. Géotechnique 36(3), 453–456 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

The research is funded by China National Funds for Distinguished Young Scientists with Grant No. 51025932, Program of Shanghai Academic Chief Scientist with Grant No. 11XD1405200, and the National Natural Science Foundation of China with Grant No. 51179128, all of which are sincerely appreciated. The authors would also thank the second author’s former Ph.D. student Haijun Hu for his assistance in numerical simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjing Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Jiang, M. & Thornton, C. Shear strength of unsaturated granular soils: three-dimensional discrete element analyses. Granular Matter 18, 37 (2016). https://doi.org/10.1007/s10035-016-0645-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0645-x

Keywords

Navigation