Skip to main content
Log in

Propagation of highly nonlinear solitary waves in a curved granular chain

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We assemble granular chains composed of spheres of uniform diameter in different curved configurations. We study the properties of highly nonlinear solitary waves traveling in the curved channels as a function of the curve angle and of the radius of curvature, using experiments and numerical simulations. We observe that solitary waves propagate robustly even under drastic deflection, such as \(90^{\circ }\) and \(180^{\circ }\) turns. When the solitary waves encounter a sharp turn with a radius of curvature as small as one spherical particle’s diameter, we report the formation of secondary solitary waves resulting from the interaction with the guiding rail. We compare experimental results with numerical simulations based on a discrete element model that accounts for nonlinear and dissipative interactions between particles. This study demonstrates that granular chains are efficient wave-guides, even in complex geometrical configurations. Moreover, the findings in this study suggest that solitary waves could be used as novel information and/or energy carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001)

    Book  Google Scholar 

  2. Coste, C., Falcon, E., Fauve, S.: Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56, 6104–6117 (1997)

    Article  ADS  Google Scholar 

  3. Sen, S., Manciu, M., Wright, J.D.: Solitonlike pulses in perturbed and driven Hertzian chains and their possible applications in detecting buried impurities. Phys. Rev. E 57(2), 2386–2397 (1998)

    Article  ADS  Google Scholar 

  4. Chatterjee, A.: Asymptotic solution for solitary waves in a chain of elastic spheres. Phys. Rev. E 59, 5912–5919 (1999)

    Article  ADS  Google Scholar 

  5. Sen, S., Manciu, M., Manciu, F.S.: Ejection of ferrofluid grains using nonlinear acoustic impulses—a particle dynamical study. Appl. Phys. Lett. 75, 1479–1481 (1999)

    Article  ADS  Google Scholar 

  6. Manciu, F.S., Sen, S.: Secondary solitary wave formation in systems with generalized Hertz interactions. Phys. Rev. E 66(1), 016616-1–016616-11 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  7. Hong, J., Xu, A.: Nondestructive identification of impurities in granular medium. Appl. Phys. Lett. 81, 4868–4870 (2002)

    Article  ADS  Google Scholar 

  8. Hong, J.: Universal power-law decay of the impulse energy in granular protectors. Phys. Rev. Lett. 94(10), 108001-1–108001-4 (2005)

    Article  ADS  Google Scholar 

  9. Vergara, L.: Scattering of solitary waves from interfaces in granular media. Phys. Rev. Lett. 95, 108002-1–108002-4 (2005)

    Article  ADS  Google Scholar 

  10. Job, S., Melo, F., Sokolow, A., Sen, S.: How Hertzian solitary waves interact with boundaries in a 1D granular medium. Phys. Rev. Lett. 94(17), 178002-1–178002-4 (2005)

    Article  ADS  Google Scholar 

  11. Nesterenko, V.F., Daraio, C., Herbold, E.B., Jin, S.: Anomalous wave reflection at the interface of two strongly nonlinear granular media. Phys. Rev. Lett. 95, 158702-1–158702-4 (2005)

    Article  ADS  Google Scholar 

  12. Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Strongly nonlinear waves in a chain of Teflon beads. Phys. Rev. E 72(1), 016603-1–016603-9 (2005)

    Article  ADS  Google Scholar 

  13. Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Energy trapping and shock disintegration in a composite granular medium. Phys. Rev. Lett. 96(5), 058002-1–058002-4 (2006)

    Article  ADS  Google Scholar 

  14. Rosas, A., Romero, A.H., Nesterenko, V.F., Lindenberg, K.: Observation of two-wave structure in strongly nonlinear dissipative granular chains. Phys. Rev. Lett. 98, 164301-1–164301-4 (2007)

    Article  ADS  Google Scholar 

  15. Job, S., Melo, F., Sokolow, A., Sen, S.: Solitary wave trains in granular chains: experiments, theory and simulations. Granul. Matter 10, 13–20 (2007)

    Article  MATH  Google Scholar 

  16. Sen, S., Hong, J., Bang, J., Avalos, E., Doney, R.: Solitary waves in the granular chain. Phys. Rep. 462(2), 21–66 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  17. Khatri, D., Rizzo, P., Daraio, C.: Highly nonlinear waves’ sensor technology for highway infrastructures. In: SPIE Smart Structures/NDE, 15th Annual International Symposium. San Diego, CA, Manuscript number 6934-25 (2008)

  18. Fraternali, F., Porter, M.A., Daraio, C.: Optimal design of composite granular protectors. Mech. Adv. Mater. Struct. 17, 1–19 (2009)

    Article  Google Scholar 

  19. Daraio, C., Ngo, D., Nesterenko, V.F., Fraternali, F.: Highly nonlinear pulse splitting and recombination in a two-dimensional granular network. Phys. Rev. E 82(3), 036603-1–036603-8 (2010)

    ADS  Google Scholar 

  20. Spadoni, A., Daraio, C.: Generation and control of sound bullets with a nonlinear acoustic lens. Proc. Natl. Acad. Sci. U.S.A. 107(16), 7230–7234 (2010)

    Article  ADS  Google Scholar 

  21. Ni, X., Cai, L., Rizzo, P.: A comparative study on three different transducers for the measurements of nonlinear solitary waves. Sensors 13(1), 1231–1246 (2013) (special issue)

    Google Scholar 

  22. Santibanez, F., Munoz, R., Caussarieu, A., Job, S., Melo, F.: Experimental evidence of solitary wave interaction in Hertzian chains. Phys. Rev. E 84, 026604-1–026604-5 (2011)

    Article  ADS  Google Scholar 

  23. Ni, X., Rizzo, P., Daraio, C.: Actuators for the generation of highly nonlinear solitary waves. Rev. Sci. Instrum. 82(3), 034902-1–034902-6 (2011)

    Article  ADS  Google Scholar 

  24. Yang, J., Silvestro, C., Khatri, D., De Nardo, L., Daraio, C.: Interaction of highly nonlinear solitary waves with linear elastic media. Phys. Rev. E 83(4), 046606-1–046606-12 (2011)

    Article  ADS  Google Scholar 

  25. Yang, J., Dunatunga, S., Daraio, C.: Amplitude-dependent attenuation of compressive waves in curved granular crystals constrained by elastic guides. Acta Mech. 223(3), 549–562 (2012)

    Article  Google Scholar 

  26. Yang, J., Silvestro, C., Sangiorgio, S.N., Borkowski, S.L., Ebramzadeh, E., De Nardo, L., Daraio, C.: Nondestructive evaluation of orthopaedic implant stability in THA using highly nonlinear solitary waves. Smart Mater. Struct. 21, 012002-1–012002-10 (2012)

    Google Scholar 

  27. Yang, J., Sangiorgio, S.N., Borkowski, S.L., Silvestro, C., De Nardo, L., Daraio, C., Ebramzadeh, E.: Site-specific quantification of bone quality using highly nonlinear solitary waves. J. Biomech. Eng. 134, 101001-1–101001-8 (2012)

    Article  Google Scholar 

  28. Ni, X., Rizzo, P.: Use of highly nonlinear solitary waves in NDT. Mater. Eval. 70, 561–569 (2012)

    Google Scholar 

  29. Ni, X., Rizzo, P., Yang, J., Katri, D., Daraio, C.: Monitoring the hydration of cement using highly nonlinear solitary waves. NDT E Int. 52, 76–85 (2012)

    Article  Google Scholar 

  30. Ni, X., Rizzo, P.: Highly nonlinear solitary waves for the inspection of adhesive joints. Exp. Mech. 52(9), 1493–1501 (2012)

    Article  Google Scholar 

  31. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  32. Tsuji, Y., Tanaka, T., Ishida, T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71(3), 239–250 (1992)

    Article  Google Scholar 

  33. Hunter, S.C.: Energy absorbed by elastic waves during impact. J. Mech. Phys. Solids 5(3), 162–171 (1957)

    Google Scholar 

  34. Kuwabara, G., Kono, K.: Restitution coefficient in a collision between two spheres. Jpn. J. Appl. Phys. 26, 1230–1233 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors at the University of Pittsburgh acknowledge the support of the Federal Railroad Administration under contract DTFR53-12-C-00014 and the University of Pittsburgh’s Mascaro Center for Sustainable Innovation. JY acknowledges the support of the University of South Carolina and the National Science Foundation (CMMI-1234452). This work was also partially supported by the National Science Foundation [CMMI-0825983 and CMMI-844540 (CAREER)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piervincenzo Rizzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, L., Yang, J., Rizzo, P. et al. Propagation of highly nonlinear solitary waves in a curved granular chain. Granular Matter 15, 357–366 (2013). https://doi.org/10.1007/s10035-013-0414-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0414-z

Keywords

Navigation