Skip to main content
Log in

Amplitude-dependent attenuation of compressive waves in curved granular crystals constrained by elastic guides

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We study the wave propagation in a curved chain of spherical particles constrained by elastic guides under the axial impact of a falling mass. We characterize the force transmission properties of the chain by varying the striker’s mass and the chain’s curvature. Experimental tests demonstrate amplitude-dependent attenuation of compressive waves propagating through the curved chain. In particular, we observe that the curved systems present an improved transmission of small dynamic disturbances relative to that of strong excitations, resulting from the close interplay between the granular particles and the softer elastic medium. We also find that the transmission of the compressive waves through the chains is dependent on the initial curvature imposed to the system. Numerical simulations, based on an approach that combines discrete element and finite element methods, corroborate the experimental results. The findings suggest that hybrid structures composed of granular particles and linear elastic media can be employed as new passive acoustic filtering materials that selectively transmit or mitigate excitations in a desired range of pressure amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nesterenko V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001)

    Google Scholar 

  2. Sen S., Hong J., Bang J., Avalos E., Doney R.: Solitary waves in the granular chain. Phys. Rep. 462, 21–66 (2008)

    Article  MathSciNet  Google Scholar 

  3. Daraio C., Nesterenko V.F., Herbold E.B., Jin S.: Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 73, 026610 (2006)

    Article  Google Scholar 

  4. Hladky-Hennion A.C., de Billy M.: Experimental validation of band gaps and localization in a one-dimensional diatomic phononic crystal. J. Acoust. Soc. Am. 122, 2594–2600 (2007)

    Article  Google Scholar 

  5. Coste C., Falcon E., Fauve S.: Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56, 6104–6117 (1997)

    Article  Google Scholar 

  6. Daraio C., Nesterenko V.F., Herbold E.B., Jin S.: Strongly nonlinear waves in a chain of Teflon beads. Phys. Rev. E 72, 016603 (2005)

    Article  Google Scholar 

  7. Daraio C., Nesterenko V.F., Herbold E.B., Jin S.: Energy trapping and shock disintegration in a composite granular medium. Phys. Rev. Lett. 96, 058002 (2006)

    Article  Google Scholar 

  8. Shukla A., Sadd M.H., Xu Y., Tai Q.M.: Influence of loading pulse duration on dynamic load transfer in a simulated granular medium. J. Mech. Phys. Solids 41, 1795–1808 (1993)

    Article  Google Scholar 

  9. Job S., Melo F., Sokolow A., Sen S.: Solitary wave trains in granular chains: experiments, theory and simulations. Granul. Matter 10, 13–20 (2007)

    Article  MATH  Google Scholar 

  10. Boechler N., Yang J., Theocharis G., Kevrekidis P.G., Daraio C.: Tunable vibrational band gaps in one-dimensional diatomic granular crystals with three-particle unit cells. J. Appl. Phys. 109(7), 074906 (2011)

    Article  Google Scholar 

  11. Manciu M., Sen S., Hurd A.J.: Crossing of identical solitary waves in a chain of elastic beads. Phys. Rev. E 63, 016614 (2001)

    Article  Google Scholar 

  12. Spadoni A., Daraio C.: Generation and control of sound bullets with a nonlinear acoustic lens. Proc. Natl. Acad. Sci. USA. 107, 7230–7234 (2010)

    Article  Google Scholar 

  13. Khatri, D., Rizzo, P., Daraio, C.: Highly Nonlinear Waves’ Sensor Technology for Highway Infrastructures. In: Proceeding for SPIE Smart Structures/NDE, pp. 6934–6925 (2008)

  14. Ni X., Rizzo P., Daraio C.: Actuators for the generation of highly nonlinear solitary waves. Rev. Sci. Instrum. 82, 034902–034906 (2011)

    Article  Google Scholar 

  15. Hong J.B., Xu A.G.: Nondestructive identification of impurities in granular medium. Appl. Phys. Lett. 81, 4868–4870 (2002)

    Article  Google Scholar 

  16. Vakakis, A.F. (ed.): Normal Modes and Localization in Nonlinear Systems. John Wiley and Sons, New York (1996)

    MATH  Google Scholar 

  17. Theocharis G., Kavousanakis M., Kevrekidis P.G., Daraio C., Porter M.A., Kevrekidis I.G.: Localized breathing modes in granular crystals with defects. Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys. 80, 066601 (2009)

    Article  Google Scholar 

  18. Daraio C., Nesterenko V.F.: Propagation of highly nonlinear signals in a two dimensional network of granular chains. Shock Compress. Condens. Matter 955(Pts 1 and 2), 1419–1422 (2007)

    Google Scholar 

  19. Daraio C., Ngo D., Nesterenko V.F., Fraternali F.: Highly nonlinear pulse splitting and recombination in a two-dimensional granular network. Phys. Rev. E 82, 036603 (2010)

    Article  Google Scholar 

  20. Doney R.L., Sen S.: Impulse absorption by tapered horizontal alignments of elastic spheres. Phys. Rev. E 72, 041304 (2005)

    Article  Google Scholar 

  21. Job S., Melo F., Sokolow A., Sen S.: How Hertzian solitary waves interact with boundaries in a 1D granular medium. Phys. Rev. Lett. 94, 178002 (2005)

    Article  Google Scholar 

  22. Rosas A., Romero A.H., Nesterenko V.F., Lindenberg K.: Observation of two-wave structure in strongly nonlinear dissipative granular chains. Phys. Rev. Lett. 98, 164301 (2007)

    Article  Google Scholar 

  23. Carretero-González R., Khatri D., Porter M.A., Kevrekidis P.G., Daraio C.: Dissipative solitary waves in granular crystals. Phys. Rev. Lett. 102, 024102 (2009)

    Article  Google Scholar 

  24. Mindlin R.D.: Compliance of elastic bodies in contact. J. Appl. Mech. 16, 259–268 (1949)

    MathSciNet  MATH  Google Scholar 

  25. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985). The maximum contact pressure developed beneath the contact surface is estimated to be 2,424 MPa, given the geometries and masses of the sphere and cylindrical striker made of 440C stainless steel. This is smaller than 1.60Y, where Y is the yield stress of the 440C material (1.60Y = 3,034 MPa), implying no onset of plasticity effect

  26. Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  27. Tsuji Y., Tanaka T., Ishida T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71, 239–250 (1992)

    Article  Google Scholar 

  28. Yang J., Silvestro C., Khatri D., De Nardo L., Daraio C.: Interaction of highly nonlinear solitary waves with linear elastic media. Phys. Rev. E. 83, 046606 (2011)

    Article  Google Scholar 

  29. Gonzalez R.C., Woods R.E.: Digital Image Processing. Prentice-Hall, Upper Saddle River (2008)

    Google Scholar 

  30. Kattan P.I.: MATLAB Guide to Finite Elements: An Interactive Approach. Springer, New York (2007)

    MATH  Google Scholar 

  31. Gere J.M., Timoshenko S.P.: Mechanics of Materials. Pws Pub Co., Boston (1997)

    Google Scholar 

  32. Reed J.: Energy losses due to elastic wave propagation during an elastic impact. J. Phys. D Appl. Phys. 18, 2329–2337 (1985)

    Article  Google Scholar 

  33. Hunter S.C.: Energy absorbed by elastic waves during impact. J. Mech. Phys. Solids 5, 162–171 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lorenz, A., Tuozzolo, C., Louge, M.Y.: Measurements of impact properties of small, nearly spherical particles. In: Second International Conference on CFD in the Minerals and Process Industries, vol. 37, pp. 292–298 (1997)

  35. Puttock, M.J., Thwaite, E.G.: Elastic compression of spheres and cylinders at point and line contact. In: National Standards Laboratory Technical Paper No. 25, Commonwealth Scientific and Industrial Research Organization. Australia (1969)

  36. Shampine L.F., Reichelt M.W.: The MATLAB ODE Suite. SIAM J. Sci. Comput. 18, 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Daraio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Dunatunga, S. & Daraio, C. Amplitude-dependent attenuation of compressive waves in curved granular crystals constrained by elastic guides. Acta Mech 223, 549–562 (2012). https://doi.org/10.1007/s00707-011-0568-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0568-x

Keywords

Navigation