Skip to main content
Log in

Derivation of a Schrödinger-like equation for elastic waves in granular media

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A theoretical model for the propagation of acoustic waves in dry granular media is presented within the framework of the nonlinear elastic theory recently proposed by Jiang and Liu. Paralleling the analysis of Trégourès and van Tiggelen for multiple scattering of acoustic waves in heterogeneous elastic media, we derive a quantum field formulation of the dynamics of deformation in static granular ensembles in which the total wave energy satisfies a Schrödinger-like equation. An additional term appears in the corresponding time-evolution matrix, which together with the strain-dependent elastic coefficients, leads to a description of intrinsic features of granular dynamics such as volume dilatancy, mechanical yield, and anisotropies in the stress distribution. Starting from the Laplace transform of the Schrödinger-like equation and introducing the disorder perturbation as a small fluctuation of the time-evolution operator, we derive the radiative transport equation and the related diffusion equation for the propagation of elastic waves in a granular medium. The present approach provides an accurate description of acoustic wave propagation in granular packings and represents a powerful tool to interpret the results of current experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaeger H.M., Nagel S.R., Behringer R.P.: Granular solids, liquids and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)

    Article  ADS  Google Scholar 

  2. Herrmann H.J., Holvi J.-P., Luding S.: Physics of dry granular media. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  3. de Gennes P.-G.: Granular matter: a tentative view. Rev. Mod. Phys. 71, S374–S382 (1999)

    Article  Google Scholar 

  4. Landau L.D., Lifshitz E.M.: Theory of elasticity. Pergamon Press, New York (1970)

    Google Scholar 

  5. Luding S.: Information propagation. Nature 435, 159–160 (2005)

    Article  ADS  Google Scholar 

  6. Snoeijer J.H., Vlugt T.J.H., van Hecke M., van Saarloos W.: Force network ensemble: a new approach to static granular matter. Phys. Rev. Lett. 92, 054302 (2004)

    Article  ADS  Google Scholar 

  7. Snoeijer J.H., van Hecke M., Somfai E., van Saarloos W.: Packing geometry and statistics of force networks in granular media. Phys. Rev. E 70, 011201 (2004)

    Article  Google Scholar 

  8. Majmudar T.S., Behringer R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005)

    Article  ADS  Google Scholar 

  9. Geng J., Howell D., Longhi E., Behringer R.P., Reydellet, Vanel L., Clément E., Luding S.: Footprints in sand: the response of a granular material to local perturbations. Phys. Rev. Lett. 87, 035506 (2001)

    Article  ADS  Google Scholar 

  10. Reydellet G., Clément E.: Green function probe of a static granular piling. Phys. Rev. Lett. 86, 3308–3311 (2001)

    Article  ADS  Google Scholar 

  11. Luding S.: Stress distribution in static two-dimensional granular model media in the absence of friction. Phys. Rev. E 55, 4720–4729 (1997)

    Article  ADS  Google Scholar 

  12. Goldenberg C., Goldhirsch I.: Friction enhances elasticity in granular solids. Nature 435, 188–191 (2005)

    Article  ADS  Google Scholar 

  13. Jia X., Caroli C., Velicky B.: Ultrasound propagation in externally stressed granular media. Phys. Rev. Lett. 82, 1863–1866 (1999)

    Article  ADS  Google Scholar 

  14. Jia X.: Codalike multiple scattering of elastic waves in dense granular media. Phys. Rev. Lett. 93, 154303 (2004)

    Article  ADS  Google Scholar 

  15. Makse H.A., Gland N., Johnson D.L., Schwartz L.: Granular packings: nonlinear elasticity, sound propagation, and collective relaxation dynamics. Phys. Rev. E 70, 061302 (2004)

    Article  ADS  Google Scholar 

  16. Tournat V., Gusev V.E.: Nonlinear effects for coda-type elastic waves in stressed granular media. Phys. Rev. E 80, 011306 (2009)

    Article  ADS  Google Scholar 

  17. Ryzhik L., Papanicolaou G., Keller J.B.: Transport equation for elastic and other waves in random media. Wave Motion 24, 327–370 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Trégourès N.P., van Tiggelen B.A.: Quasi-two-dimensional transfer of elastic waves. Phys. Rev. E 66, 036601 (2002)

    Article  ADS  Google Scholar 

  19. van Tiggelen B.A., Skipetrov S.E.: Wave scattering in complex media: from theory to applications. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  20. Jiang Y., Liu M.: Granular elasticity without the Coulomb condition. Phys. Rev. Lett. 91, 144301 (2003)

    Article  ADS  Google Scholar 

  21. Jiang Y., Liu M.: From elasticity to hypoplasticity: dynamics of granular solids. Phys. Rev. Lett. 99, 105501 (2007)

    Article  ADS  Google Scholar 

  22. Jiang Y., Liu M.: A brief review of “granular elasticity”, why and how far is sand elastic? Eur. Phys. J. E 22, 255–260 (2007)

    Article  MathSciNet  Google Scholar 

  23. Maynard J.D.: Acoustical analogs of condensed-matter problems. Rev. Mod. Phys. 73, 401–417 (2001)

    Article  ADS  Google Scholar 

  24. Zeravcic Z., van Saarloos W., Nelson D.R.: Localization behavior of vibrational modes in granular packings. Europhys. Lett. 83, 44001 (2008)

    Article  ADS  Google Scholar 

  25. Corwin E.I., Jaeger H.M., Nagel S.R.: Structural signature of jamming in granular media. Nature 435, 1075–1078 (2005)

    Article  ADS  Google Scholar 

  26. Jiang, Y., Liu, M.: Hydrodynamic theory of granular solids: permanent, transient, and granular elasticity. arXiv: 0706.1352v1 (2007)

  27. Reynolds O.: On the dilatancy of media composed of rigid particles in contact, with experimental illustrations. Philos. Mag. 20, 469–481 (1885)

    Google Scholar 

  28. Hertz H.: Über die Berührung fester elastischer körpe. J. Reine Angewandte Mathematik 92, 156–171 (1882)

    Article  Google Scholar 

  29. Boussinesq J.: Essai théorique sur l’équilibre d’élasticité des massifs pulvérulents et sur la poussée des terres sans cohésion. Comptes Rendus des Séances de l’Académie des Sciences 77, 1521–1525 (1873)

    Google Scholar 

  30. Humrickhouse P.W., Sharpe J.P., Corradini M.L.: Comparison of hyperelastic models for granular materials. Phys. Rev. E 81, 011303 (2010)

    Article  ADS  Google Scholar 

  31. Tykhoniuk R., Tomas J., Luding S., Kappl M., Heim L., Butt H.-J.: Ultrafine cohesive powders: from interparticle contacts to continuum behaviour. Chem. Eng. Sci. 62, 2843–2864 (2007)

    Article  Google Scholar 

  32. Bonneau L., Andreotti B., Clément E.: Surface waves in granular media under gravity and their relation to booming avalanches. Phys. Rev. E 75, 016602 (2007)

    Article  ADS  Google Scholar 

  33. Jiang Y., Liu M.: Incremental stress-strain relation from granular elasticity: comparison to experiments. Phys. Rev. E 77, 021306 (2008)

    Article  ADS  Google Scholar 

  34. Serero D., Rydellet G., Claudin P., Clément E., Levine D.: Stress response function of a granular layer: quantitative comparison between experiments and isotropic elasticity. Eur. Phys. J. E 6, 169–179 (2001)

    Article  Google Scholar 

  35. Geng J., Rydellet G., Clément E., Behringer R.P.: Green function measurements of force transmission in 2D granular materials. Phys. D 182, 274–303 (2003)

    Article  MATH  Google Scholar 

  36. Goldenberg C., Goldhirsch I.: Force chains, microelasticity, and macroelasticity. Phys. Rev. Lett. 89, 084302 (2002)

    Article  ADS  Google Scholar 

  37. Goldenberg C., Goldhirsch I.: On the microscopic foundations of elasticity. Eur. Phys. J. E 9, 245–251 (2002)

    Article  Google Scholar 

  38. Goldenberg C., Goldhirsch I.: Small and large scale granular statics. Granul. Matter 6, 87–96 (2004)

    Article  MATH  Google Scholar 

  39. Goldenberg C., Atman A.P.F., Claudin P., Combe G., Goldhirsch I.: Scale separation in granular packings: stress plateaus and fluctuations. Phys. Rev. Lett. 96, 168001 (2006)

    Article  ADS  Google Scholar 

  40. Goldenberg C., Goldhirsch I.: Effects of friction and disorder on the quasistatic response of granular solids to a localized force. Phys. Rev. E 77, 041303 (2008)

    Article  ADS  Google Scholar 

  41. Serero D., Goldenberg C., Noskowicz S.H., Goldhirsch I.: The classical granular temperature and slightly beyond. Powder Tech. 182, 257–271 (2008)

    Article  Google Scholar 

  42. Tanguy A., Wittmer J.P., Leonforte F., Barrat J.-L.: Continuum limit of amorphous elastic bodies: a finite-size study of low-frequency harmonic vibrations. Phys. Rev. E 66, 174205 (2002)

    ADS  Google Scholar 

  43. Leonforte F., Tanguy A., Wittmer J.P., Barrat J.-L.: Continuum limit of amorphous elastic bodies II: linear response to a point force. Phys. Rev. E 70, 014203 (2004)

    ADS  Google Scholar 

  44. Leonforte F., Boissière R., Tanguy A., Wittmer J.P., Barrat J.-L.: Continuum limit of amorphous elastic bodies III: three dimensional systems. Phys. Rev. E 72, 224206 (2005)

    Google Scholar 

  45. Leonforte F., Tanguy A., Wittmer J.P., Barrat J.-L.: Inhomogeneous elastic response of silica glass. Phys. Rev. Lett. 97, 055501 (2006)

    Article  ADS  Google Scholar 

  46. Goldenberg C., Tanguy A., Barrat J.-L.: Particle displacements in the elastic deformation of amorphous materials: local fluctuations vs. non-affine field. Europhys. Lett. 80, 16003 (2007)

    Article  ADS  Google Scholar 

  47. Monaghan J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  ADS  Google Scholar 

  48. Murdoch A.I., Bedeaux D.: Continuum equations of balance via weighted averages of microscopic quantities. Proc. R. Soc. Lond. A 445, 157–179 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  49. Glasser B.J., Goldhirsch I.: Scale dependence, correlations, and fluctuations of stresses in rapid granular flows. Phys. Fluids 13, 407–420 (2001)

    Article  ADS  Google Scholar 

  50. Cressie A.C.: Statistics for spatial data. Wiley Interscience, New York (1993)

    Google Scholar 

  51. Kolymbas D.: Bifurcation analysis for sand samples with a non-linear constitutive equation. Ingenieur-Archiv. 50, 131–140 (1981)

    Article  MATH  Google Scholar 

  52. Kolymbas D.: An outline of hypoplasticity. Arch. Appl. Mech. 61, 143–151 (1981)

    Google Scholar 

  53. Derec C., Ajdari A., Lequeux F.: Rheology and aging: a simple approach. Eur. Phys. J. E 4, 355–361 (2001)

    Article  Google Scholar 

  54. Derec C., Ajdari A., Lequeux F., Bocquet L.: Slow flows of yield stress fluids: complex spatiotemporal bahavior within a simple elastoplastic model. Phys. Rev. E 71, 010501(R) (2005)

    Google Scholar 

  55. Morse P.M., Feshbach H.: Methods of theoretical physics, vol. I. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  56. Chou P.C., Pagano N.J.: Elasticity-tensor, dyadic and engineering approaches. Dover Publication, New York (1992)

    Google Scholar 

  57. Herrmann H.J.: On the thermodynamics of granular media. J. Phys. II 3, 427–433 (1993)

    Article  Google Scholar 

  58. Liu C.-H., Nagel S.R.: Sound in sand. Phys. Rev. Lett. 68, 2301–2304 (1992)

    Article  ADS  Google Scholar 

  59. Sahimi M., Tajer S.E.: Self-affine fractal distributions of bulk density, elastic moduli, and seismic wave velocities in rocks. Phys. Rev. E 71, 046301 (2005)

    Article  ADS  Google Scholar 

  60. Johnson P.A., Jia X.: Nonlinear dynamics, granular media, and dynamic earthquake triggering. Nature 437, 871–874 (2005)

    Article  ADS  Google Scholar 

  61. Gusev V.E., Aleshin V., Tournat V.: Acoustic waves in an elastic channel near the free surface of granular media. Phys. Rev. Lett. 96, 214301 (2006)

    Article  ADS  Google Scholar 

  62. Andreotti B.: The song of dunes as a wave-particle mode locking. Phys. Rev. Lett. 93, 238001 (2004)

    Article  ADS  Google Scholar 

  63. Aleshin V., Gusev V., Tournat V.: Acoustic modes propagating along the free surface of granular media. J. Acoust. Soc. Am. 121, 2600–2611 (2007)

    Article  ADS  Google Scholar 

  64. Jacob X., Aleshin V., Tournat V., Leclaire P., Lauriks W., Gusev V.E.: Acoustic probing of the jamming transition in an unconsolidated granular medium. Phys. Rev. Lett. 100, 158003 (2008)

    Article  ADS  Google Scholar 

  65. Bonneau L., Andreotti B., Clément E.: Evidence of Rayleigh-Hertz waves and shear stiffness anomaly in granular media. Phys. Rev. Lett. 101, 118001 (2008)

    Article  ADS  Google Scholar 

  66. Gilles B., Coste C.: Low-frequency behavior of beads constrained on a lattice. Phys. Rev. Lett. 90, 174302 (2003)

    Article  ADS  Google Scholar 

  67. Somafi E., Roux J.-N., Snoeijer J., van Hecke M., van Saarloos W.: Elastic wave propagation in confined granular systems. Phys. Rev. E 72, 021301 (2005)

    Article  ADS  Google Scholar 

  68. Mouraille O., Luding S.: Sound wave propagation in weakly polydisperse granular materials. Ultrasonics 42, 498–505 (2008)

    Article  Google Scholar 

  69. Abrahams E., Anderson P.W., Licciardello D.C., Ramakrishnan T.V.: Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979)

    Article  ADS  Google Scholar 

  70. Chandrasekhar S.: Radiative transfer. Dover Publications Inc, New York (1960)

    Google Scholar 

  71. Abrikosov A.A., Gorkov L.P., Dzyaloshinski I.E.: Methods of quantum field theory in statistical physics. Dover Publications Inc, New York (1963)

    MATH  Google Scholar 

  72. Weaver R.L.: Diffusivity of ultrasound in polycrystals. J. Mech. Phys. Solids 38, 55–86 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  73. Sheng P.: Introduction to wave scattering, localization and mesoscopic phenomena. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  74. Weaver R.L., Pao Y.-H.: Axisymmetric elastic waves excited by a point source in a plate. J. Appl. Mech. 49, 821–836 (1982)

    Article  MATH  Google Scholar 

  75. Weaver R.L.: Diffuse waves in finite plates. J. Sound Vib. 94(3), 319–335 (1984)

    Article  ADS  Google Scholar 

  76. Brunet Th., Jia X., Mills P.: Mechanisms for acoustic absorption in dry and weakly wet granular media. Phys. Rev. Lett. 101, 138001 (2008)

    Article  ADS  Google Scholar 

  77. Papanicolaou G.C., Ryzhik L.V., Keller J.B.: Stability of the P-to-S energy in the diffusive regime. Bull. Seism. Soc. Am. 86, 1107–1115 (1996)

    Google Scholar 

  78. Margerin L., van Tiggelen B., Campillo M.: Effect of absorption on energy partition of elastic waves in the seismic coda. Bull. Seism. Soc. Am. 91, 624–627 (2001)

    Article  Google Scholar 

  79. Anderson P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)

    Article  ADS  Google Scholar 

  80. Hu H., Strybulevych A., Page J.H., Skipetrov S.E., van Tiggelen B.A.: Localization of ultrasound in a three-dimensional elastic network. Nature Phys. 4, 945–948 (2008)

    Article  ADS  Google Scholar 

  81. van Tiggelen B.A., Margerin L., Campillo M.: Coherent backscattering of elastic waves: specific role of sources, polarization, and near field. J. Acoust. Soc. Am. 110, 1291–1298 (2001)

    Article  ADS  Google Scholar 

  82. Larose E., Margerin L., van Tiggelen B.A., Campillo M.: Weak localization of seismic waves. Phys. Rev. Lett. 93, 048501 (2004)

    Article  ADS  Google Scholar 

  83. Christoffersen J., Mehrabadi M.M., Nemat-Nasser S.: A micromechanical description of granular material behavior. J. Appl. Mech. 48, 339–344 (1981)

    Article  MATH  Google Scholar 

  84. Chang C.S., Ma L.: A micromechanical-based micropolar theory for deformation of granular solids. Int. J. Solids Struc. 28, 67–86 (1991)

    Article  MATH  Google Scholar 

  85. Nemat-Nasser S.: A micromechanicallly-based constitutive model for frictional deformation of granular materials. J. Mech. Phys. Solids 48, 1541–1563 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  86. O’Sullivan C., Bray J.D., Li S.: A new approach for calculating strain for particulate media. Int. J. Numer. Anal. Methods Geomech. 27, 859–877 (2003)

    Article  MATH  Google Scholar 

  87. Nikolaevskii V.N.: Continuum approach to the theory of waves in fragmentary media. Phys. Earth Planet. Interiors 50, 32–38 (1988)

    Article  ADS  Google Scholar 

  88. Chang C.S., Gao J.: Non-linear dispersion of plane wave in granular media. Int. J. Non-Linear Mech. 30, 111–128 (1995)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Trujillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trujillo, L., Peniche, F. & Sigalotti, L.D.G. Derivation of a Schrödinger-like equation for elastic waves in granular media. Granular Matter 12, 417–436 (2010). https://doi.org/10.1007/s10035-010-0190-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0190-y

Keywords

Navigation