Skip to main content
Log in

Small and large scale granular statics

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract.

Recent experimental results on the static or quasistatic response of granular materials have been interpreted to suggest the inapplicability of the traditional engineering approaches, which are based on elasto-plastic models (which are elliptic in nature). Propagating (hyperbolic) or diffusive (parabolic) models have been proposed to replace the ‘old’ models. Since several recent experiments were performed on small systems, one should not really be surprised that (continuum) elasticity, a macroscopic theory, is not directly applicable, and should be replaced by a grain-scale (“microscopic”) description. Such a description concerns the interparticle forces, while a macroscopic description is given in terms of the stress field. These descriptions are related, but not equivalent, and the distinction is important in interpreting the experimental results. There are indications that at least some large scale properties of granular assemblies can be described by elasticity, although not necessarily its isotropic version. The purely repulsive interparticle forces (in non-cohesive materials) may lead to modifications of the contact network upon the application of external forces, which may strongly affect the anisotropy of the system. This effect is expected to be small (in non-isostatic systems) for small applied forces and for pre-stressed systems (in particular for disordered systems). Otherwise, it may be accounted for using a nonlinear, incrementally elastic model, with stress-history dependent elastic moduli. Although many features of the experiments may be reproduced using models of frictionless particles, results demonstrating the importance of accounting for friction are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Levy & H. Kalman, editors, Handbook of Conveying and Handling of Particulate Solids, (Elsevier, 2001)

  2. H. M. Jaeger, S. R. Nagel, & R. P. Behringer, Physics Today 49, (1996), p. 32

    Google Scholar 

  3. H. M. Jaeger, S. R. Nagel, & R. P. Behringer, Rev. Mod. Phys. 68, (1996), p. 1259

    Google Scholar 

  4. P. G. de Gennes, Rev. Mod. Phys. 71, (1999), p. S374

  5. L. P. Kadanoff, Rev. Mod. Phys. 71, (1999), p. 435

  6. I. Goldhirsch, Ann. Rev. Fluid Mech. 35, (2003), p. 267

  7. R. M. Nedderman, Statics and Kinematics of Granular Materials, (Cambridge University Press, 1992)

  8. S. B. Savage, Modeling and granular materials boundary value problems, Proceedings of the NATO Advanced Study Institute on Physics of Dry Granular Media, Cargèse, France, September 15-26, 1997, H. J. Herrmann, J. P. Hovi, & S. Luding (Eds.), (Kluwer, 1998) pp. 25–95

  9. A. Drescher & G. de Josselin de Jong, J. Mech. Phys. Solids 20, (1972), p. 337

    Google Scholar 

  10. P. A. Cundall & O. D. L. Strack, Geotechnique 29, (1979), p. 47

  11. F. Radjai, S. Roux, & J. J. Moreau, Chaos 9, (1999), p. 544

  12. J. P. Wittmer, P. Claudin, M. E. Cates, & J.-P. Bouchaud, Nature 382, (1996), p. 336

  13. J.-P. Bouchaud, M. E. Cates, & P. Claudin, J. de Physique I 5, (1995), p. 639

    Google Scholar 

  14. J. P. Wittmer, M. E. Cates, & P. Claudin, J. de Physique I 7, (1997), p. 39

    Google Scholar 

  15. A. V. Tkachenko & T. A. Witten, Phys. Rev. E 60, (1999), p. 687

    Google Scholar 

  16. J.-P. Bouchaud, P. Claudin, D. Levine, & M. Otto, Eur. Phys. J. E 4, (2001), p. 451

    Google Scholar 

  17. J. E. S. Socolar, D. G. Schaeffer, & P. Claudin, Eur. Phys. J. E 7, (2002), p. 353

    Google Scholar 

  18. M. Otto, J.-P. Bouchaud, P. Claudin, & J. E. S. Socolar, Phys. Rev. E 67, (2003), 031302

    Google Scholar 

  19. M. D. Silva & J. Rajchenbach, Nature 406, (2000), p. 708

  20. G. Reydellet & E. Clément, Phys. Rev. Lett. 86, (2001), p. 3308

    Google Scholar 

  21. D. Serero, G. Reydellet, P. Claudin, E. Clément, & D. Levine, Eur. Phys. J. E 6, (2001), p. 169

    Google Scholar 

  22. J. Geng et al., Phys. Rev. Lett. 87, (2001), 035506

  23. J. Geng, G. Reydellet, E. Clément, & R. P. Behringer, Physica D 182, (2003), p. 274

    Google Scholar 

  24. N. W. Mueggenburg, H. M. Jaeger, & S. R. Nagel, Phys. Rev. E 66, (2002), 031304

    Google Scholar 

  25. C. F. Moukarzel, H. Pancheco-Martínez, J. C. Ruiz-Suarez, & A. M. Vidales, cond-mat/0308240

  26. C. Goldenberg & I. Goldhirsch, Phys. Rev. Lett. 89, (2002), 084302

    Google Scholar 

  27. I. Goldhirsch & C. Goldenberg, Eur. Phys. J. E 9, (2002), p. 245

    Google Scholar 

  28. A. Tanguy, J. P. Wittmer, F. Leonforte, & J.-L. Barrat, Phys. Rev. B 66, (2002), 174205

    Google Scholar 

  29. C. F. Moukarzel, Granular Matter 3, (2001), p. 41

  30. D. A. Head, A. V. Tkachenko, & T. A. Witten, Eur. Phys. J. E 6, (2001), p. 99

    Google Scholar 

  31. L. E. Silbert, D. Ertaş, G. S. Grest, T. C. Halsey, & D. Levine, Phys. Rev. E 65, (2001), 031304

    Google Scholar 

  32. H. J. Herrmann & S. Luding, Cont. Mech. and Thermodynamics 10, (1998), p. 189

    Google Scholar 

  33. D. E. Wolf, Modeling and computer simulation of granular media, In: Computational Physics, K. H. Hoffmann & M. Schreiber (Eds.), (Springer, Heidelberg, 1996) pp. 64–94

  34. G. M. L. Gladwell, Contact Problems in the Classical Theory of Elasticity (Sijthoff & Noordhoff, The Netherlands, 1980)

  35. K. L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)

  36. L. Landau & E. Lifshitz, Theory of Elasticity, 3rd Edition (Pergamon, 1986)

  37. J. Schäfer, S. Dippel, & D. E. Wolf, J. de Physique I 6, (1996), p. 5

    Google Scholar 

  38. M. H. Sadd, Q. Tai, & A. Shukla, Int. J. of Non-Linear Mech. 28, (1993), p. 251

  39. O. R. Walton, Force models for particle-dynamics simulations of granular materials, In: Mobile Particulate Systems, E. Guazzelli & L. Oger (Eds.), (Kluwer, 1995) p. 367–380

  40. C. F. Moukarzel, Phys. Rev. Lett. 81, (1998), p. 1634

  41. J.-N. Roux, Physical Review E 61, (2000), p. 6802

  42. H. Makse, D. L. Johnson, & L. M. Schwartz, Phys. Rev. Lett. 84, (2000), p. 4160

    Google Scholar 

  43. D. W. Howell & R. P. Behringer, Chaos 9, (1999), p. 559

  44. D. M. Mueth, H. M. Jaeger, & S. R. Nagel, Phys. Rev. E 57, (1998), p. 3164

    Google Scholar 

  45. D. L. Blair, N. W. Mueggenburg, A. H. Marshall, H. M. Jaeger, & S. R. Nagel, Phys. Rev. E 63, (2001), p. 041304

    Google Scholar 

  46. F. Radjai, M. Jean, J.-J. Moreau, & S. Roux, Phys. Rev. Lett. 77, (1996), p. 274

    Google Scholar 

  47. J. M. Erikson, N. W. Mueggenburg, H. M. Jaeger, & S. R. Nagel, Phys. Rev. E 66, (2002), 040301

    Google Scholar 

  48. M. L. Nguyen & S. N. Coppersmith, Phys. Rev. E 62, (2000), p. 5248

    Google Scholar 

  49. L. E. Silbert, G. S. Grest, & J. W. Landry, Phys. Rev. E 66, (2002), 061303

    Google Scholar 

  50. C. S. O’Hern, S. A. Langer, A. J. Liu, & S. R. Nagel, Phys. Rev. Lett. 86, (2000), p. 111

    Google Scholar 

  51. C.-H. Liu et al., Science 269, (1995), p. 513

  52. S. N. Coppersmith, C.-H. Liu, S. Majumdar, O. Narayan, & T. A. Witten, Phys. Rev. E 53, (1996), p. 4673

    Google Scholar 

  53. C. S. O’Hern, S. A. Langer, A. J. Liu, & S. R. Nagel, Phys. Rev. Lett. 88, (2002), 075507

    Google Scholar 

  54. B. J. Glasser & I. Goldhirsch, Phys. Fluids 13, (2001), p. 407

    Google Scholar 

  55. M. Born & K. Huang, Dynamical theory of crystal lattices (Clarendon Press, Oxford, 1988)

  56. C. Goldenberg & I. Goldhirsch, Unpublished

  57. S. Luding, Phys. Rev. E 55, (1997), p. 4720

  58. M. E. Cates, J. P. Wittmer, J.-P. Bouchaud, & P. Claudin, Chaos 9, (1999), p. 511

  59. M. Oda, Mech. Mat. 16, (1993), p. 35

  60. J. Geng & R. P. Behringer, Private communication (2002)

  61. L. Vu-Quoc & X. Zhang, Mech. Mat. 31, (1999), p. 235

  62. J. Schwartz & E. Y. Harper, Int. J. Solids and Structures 7, (1971), p. 1613

    Google Scholar 

  63. R. D. Mindlin & H. Deresiewicz, J. Appl. Mech. 20, (1953), p. 327

    Google Scholar 

  64. C. Goldenberg & I. Goldhirsch, In preparation

  65. A. C. Eringen, Theory of micropolar elasticity, In: Fracture: An Advanced Treatise, Volume II: Mathematical Fundamentals, H. Liebowitz (Ed.), (Academic Press, New York and London, 1968) pp. 621–729

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Goldhirsch.

Additional information

We appreciate helpful interactions with R. P. Behringer, J. Geng, E. Clément, D. Serero, H. Jaeger, T. A. Witten, N. Mueggenburg and J.-N. Roux. Support from the U.S.-Israel Binational Science Foundation (BSF), INTAS and the Israel Science Foundation (ISF) is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldenberg, C., Goldhirsch, I. Small and large scale granular statics. GM 6, 87–96 (2004). https://doi.org/10.1007/s10035-004-0165-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-004-0165-y

Keywords

Navigation