Skip to main content
Log in

Factors Regulating Nitrogen Retention During the Early Stages of Recovery from Fire in Coastal Chaparral Ecosystems

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Fire is a fundamental reorganizing force in chaparral and other Mediterranean-type ecosystems. Postfire nutrient redistribution and cycling are frequently invoked as drivers of ecosystem recovery. The extent to which N is transported from slopes to streams following fire is a function of the balance between the rate at which soil microbes retain and metabolize N into forms that readily dissolve or leach, and how rapidly recovering plants sequester this mobilized N. To better understand how fire impacts this balance, we sampled soil and plant N dynamics in 17 plots distributed across two burned, chaparral-dominated watersheds in Santa Barbara County, California. We measured a variety of ecosystem properties in both burned and unburned plots on a periodic basis for 2 years, including soil water content, pH, soil and plant carbon and nitrogen, extractable inorganic nitrogen, dissolved organic nitrogen, and microbial biomass. In burned plots, nitrification was significantly enhanced relative to rates measured in unburned plots. Ephemeral herbs established quickly following the first postfire rain events. Aboveground plant biomass assimilated N commensurate with soil net mineralization, implying tight N cycling during the early stages of recovery. Microbial biomass N, on the other hand, remained low throughout the study. These findings highlight the importance of herbaceous species in conserving ecosystem nutrients as shrubs gradually recover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Austin AT, Vitousek PM. 1998. Nutrient dynamics on a precipitation gradient in Hawai’i. Oecologia 113:519–29. doi:10.1007/s004420050405.

    Article  Google Scholar 

  • Bååth E, Frostegård Å, Pennanen T, Fritze H. 1995. Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biol Biochem 27:229–40. doi:10.1016/0038-0717(94)00140-V.

    Article  Google Scholar 

  • Beck T, Joergensen RG, Kandeler E, Makeschin F, Nuss E, Oberholzer HR, Scheu S. 1997. An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol Biochem 29:1023–32. doi:10.1016/S0038-0717(97)00030-8.

    Article  CAS  Google Scholar 

  • Binkley D, Hart SC. 1989. The components of nitrogen availability assessments in forest soils. In: Stewart BA, Ed. Advances in soil science, advances in soil science. New York: Springer. p 57–112.

    Chapter  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS. 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–42. doi:10.1016/0038-0717(85)90144-0.

    Article  CAS  Google Scholar 

  • Bytnerowicz A, Fenn ME. 1996. Nitrogen deposition in California forests: a review. Environ Pollut 92:127–46. doi:10.1016/0269-7491(95)00106-9.

    Article  CAS  PubMed  Google Scholar 

  • Castaldi S, Carfora A, Fiorentino A, Natale A, Messere A, Miglietta F, Cotrufo MF. 2008. Inhibition of net nitrification activity in a Mediterranean woodland: possible role of chemicals produced by Arbutus unedo. Plant Soil 315:273–83. doi:10.1007/s11104-008-9750-x.

    Article  Google Scholar 

  • Certini G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143:1–10. doi:10.1007/s00442-004-1788-8.

    Article  PubMed  Google Scholar 

  • Cheng WX, Kuzyakov Y. 2005. Root effects on soil organic matter decomposition. Agron. Monogr. 48:119–43.

    CAS  Google Scholar 

  • Choromanska U, DeLuca TH. 2002. Microbial activity and nitrogen mineralization in forest mineral soils following heating: evaluation of post-fire effects. Soil Biol Biochem 34:263–71. doi:10.1016/S0038-0717(01)00180-8.

    Article  CAS  Google Scholar 

  • Christensen NL. 1973. Fire and the nitrogen cycle in california chaparral. Science 181:66–8. doi:10.1126/science.181.4094.66.

    Article  CAS  PubMed  Google Scholar 

  • Christensen NL, Muller CH. 1975. Effects of fire on factors controlling plant growth in Adenostoma chaparral. Ecol Monogr 45:29–55. doi:10.2307/1942330.

    Article  Google Scholar 

  • Cleve KV, Viereck LA. 1981. Forest succession in relation to nutrient cycling in the boreal forest of Alaska. In: West DC, Shugart HH, Botkin DB, Eds. Forest succession, Springer advanced texts in life sciences. New York: Springer. p 185–211.

    Google Scholar 

  • Coombs JS, Melack JM. 2013. Initial impacts of a wildfire on hydrology and suspended sediment and nutrient export in California chaparral watersheds. Hydrol Process 27:3842–51. doi:10.1002/hyp.9508.

    Article  Google Scholar 

  • Davis FW, Borchert MI, Odion DC. 1989. Establishment of microscale vegetation pattern in maritime chaparral after fire. Vegetatio 84:53–67. doi:10.1007/BF00054665.

    Article  Google Scholar 

  • Davis SD, Mooney HA. 1986. Water use patterns of four co-occurring chaparral shrubs. Oecologia 70:172–7.

    Article  Google Scholar 

  • Debano LF, Conrad CE. 1978. The effect of fire on nutrients in a chaparral ecosystem. Ecology 59:489–97. doi:10.2307/1936579.

    Article  CAS  Google Scholar 

  • DeBano LF, Conrad CE. 1976. Nutrients lost in debris and runoff water from a burned chaparral watershed. PB US Natl Tech Inf Serv.

  • De Boer W, Kowalchuk GA. 2001. Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33:853–66. doi:10.1016/S0038-0717(00)00247-9.

    Article  Google Scholar 

  • DeSouza J, Silka PA, Davis SD. 1986. Comparative physiology of burned and unburned Rhus laurina after chaparral wildfire. Oecologia 71:63–8. doi:10.1007/BF00377322.

    Article  Google Scholar 

  • DiStefano JF, Gholz HL. 1986. A proposed use of ion exchange resins to measure nitrogen mineralization and nitrification in intact soil cores. Commun Soil Sci Plant Anal 17:989–98. doi:10.1080/00103628609367767.

    Article  CAS  Google Scholar 

  • Dunn PH, DeBano LF, Eberlein GE. 1979. Effects of burning on chaparral soils: II. Soil microbes and nitrogen mineralization. Soil Sci Soc Am J 43:509. doi:10.2136/sssaj1979.03615995004300030016x.

    Article  CAS  Google Scholar 

  • Fenn ME, Poth MA, Dunn PH, Barro SC. 1993. Microbial N and biomass, respiration and N mineralization in soils beneath two chaparral species along a fire-induced age gradient. Soil Biol Biochem 25:457–66. doi:10.1016/0038-0717(93)90071-I.

    Article  Google Scholar 

  • Fierer N. 2003. Stress ecology and the dynamics of microbial communities and processes in soil. Santa Barbara (CA): University of California, Santa Barbara.

    Google Scholar 

  • Fierer N, Schimel JP. 2002. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–87. doi:10.1016/S0038-0717(02)00007-X.

    Article  CAS  Google Scholar 

  • Franklin JF, Hemstrom MA. 1981. Aspects of succession in the coniferous forests of the pacific northwest. In: West DC, Shugart HH, Botkin DB, Eds. Forest succession, Springer advanced texts in life sciences. New York: Springer. p 212–29.

    Google Scholar 

  • Fritze H, Pennanen T, Pietikäinen J. 1993. Recovery of soil microbial biomass and activity from prescribed burning. Can J For Res 23:1286–90. doi:10.1139/x93-164.

    Article  Google Scholar 

  • Giovannini G, Lucchesi S, Giachetti M. 1990. Effects of heating on some chemical parameters related to soil fertility and plant growth. Soil Sci 149:344–50. doi:10.1097/00010694-199006000-00005.

    Article  CAS  Google Scholar 

  • Grasso G, Ripabelli G, Sammarco M, Mazzoleni S. 1996. Effects of heating on the microbial populations of a grassland soil. Int J Wildland Fire 6:67–70.

    Article  Google Scholar 

  • Gray JT, Schlesinger WH. 1981. Nutrient cycling in mediterranean type ecosystems. In: Miller PC, Ed. Resource use by chaparral and matorral, ecological studies. New York: Springer. p 259–85.

    Chapter  Google Scholar 

  • Green RO, Eastwood ML, Sarture CM, Chrien TG, Aronsson M, Chippendale BJ, Faust JA, Pavri BE, Chovit CJ, Solis M, Olah MR, Williams O. 1998. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens Environ 65:227–48. doi:10.1016/S0034-4257(98)00064-9.

    Article  Google Scholar 

  • Grogan P, Burns TD, Chapin FS. 2000. Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia 122:537–44. doi:10.1007/s004420050977.

    Article  Google Scholar 

  • Guo Q. 2001. Early post-fire succession in California chaparral: changes in diversity, density, cover and biomass. Ecol Res 16:471–85.

    Article  Google Scholar 

  • Hanan EJ, Schimel JP, Dowdy K, D’Antonio CM. 2016. Effects of substrate supply, pH, and char on net nitrogen mineralization and nitrification along a wildfire-structured age gradient in chaparral. Soil Biol Biochem 95:87–99. doi:10.1016/j.soilbio.2015.12.017.

    Article  CAS  Google Scholar 

  • Hart SC, DeLuca TH, Newman GS, MacKenzie MD, Boyle SI. 2005. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For Ecol Manag 220:166–84. doi:10.1016/j.foreco.2005.08.012 Forest Soils Research: Theory, Reality and its Role in Technology Selected and Edited Papers from the 10th North American Forest Soils Conference held in Saulte Ste. Marie, ON, 20–24 July 2003.

    Article  Google Scholar 

  • Hart SC, Firestone MK. 1989. Evaluation of three insitu soil nitrogen availability assays. Can J For Res 19:185–91. doi:10.1139/x89-026.

    Article  Google Scholar 

  • Henry JD, Swan JMA. 1974. Reconstructing forest history from live and dead plant material—an approach to the study of forest succession in Southwest New Hampshire. Ecology 55:772–83. doi:10.2307/1934413.

    Article  Google Scholar 

  • Homyak PM, Sickman JO, Miller AE, Melack JM, Meixner T, Schimel JP. 2014. Assessing nitrogen-saturation in a seasonally dry chaparral watershed: limitations of traditional indicators of N-saturation. Ecosystems 17:1286–305. doi:10.1007/s10021-014-9792-2.

    Article  CAS  Google Scholar 

  • Hurlbert SH, Lombardi CM. 2009. Final collapse of the Neyman–Pearson decision theoretic framework and rise of the neoFisherian. Ann Zool Fenn 46:311–49. doi:10.5735/086.046.0501.

    Article  Google Scholar 

  • Jenny H, Vlamis J, Martin WE. 1950. Greenhouse assay of fertility of California soils. Hilgardia 20:1–8.

    Article  CAS  Google Scholar 

  • Jia X, Richards J et al. 1999. Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification. IEEE Trans Geosci Remote Sens 37(1):538–42.

    Article  Google Scholar 

  • Jones JB. 2001. Laboratory guide for conducting soil tests and plant analysis. Boca Raton: CRC.

    Google Scholar 

  • Keeley JE. 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int J Wildland Fire 18:116–26.

    Article  Google Scholar 

  • Keeley JE, Fotheringham CJ. 2001. Historic fire regime in Southern California Shrublands. Conserv Biol 15:1536–48. doi:10.1046/j.1523-1739.2001.00097.x.

    Article  Google Scholar 

  • Keeley JE, Fotheringham CJ, Baer-Keeley M. 2005. Determinants of postfire recovery and succession in Mediterranean-climate shrublands of California. Ecol Appl 15:1515–34.

    Article  Google Scholar 

  • Keeley JE, Keeley SC. 2000. Chaparral. In: North American terrestrial vegetation. pp 165–207.

  • Key CH, Benson NC. 2004. Ground measure of severity, the composite burn index. FIREMON Landsc Assess 4:2004.

    Google Scholar 

  • Knicker H. 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85:91–118. doi:10.1007/s10533-007-9104-4.

    Article  CAS  Google Scholar 

  • Kutiel P, Inbar M. 1993. Fire impacts on soil nutrients and soil erosion in a Mediterranean pine forest plantation. Catena 20:129–39.

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K. 2000. Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–98. doi:10.1016/S0038-0717(00)00084-5.

    Article  CAS  Google Scholar 

  • Lachat. 2003. Determination of ammonium, nitrate, ortho-phosphate and total phosphorus. CO: Loveland.

    Google Scholar 

  • Lewis DJ, Singer MJ, Dahlgren RA, Tate KW. 2006. Nitrate and sediment fluxes from a California Rangeland Watershed. J Environ Qual 35:2202. doi:10.2134/jeq2006.0042.

    Article  CAS  PubMed  Google Scholar 

  • Likens GE, Bormann FH, Johnson NM, Fisher DW, Pierce RS. 1970. Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecol Monogr 40:23–47. doi:10.2307/1942440.

    Article  Google Scholar 

  • Li X, Meixner T, Sickman JO, Miller AE, Schimel JP, Melack JM. 2006. Decadal-scale dynamics of water, carbon and nitrogen in a California chaparral ecosystem: DAYCENT modeling results. Biogeochemistry 77:217–45. doi:10.1007/s10533-005-1391-z.

    Article  CAS  Google Scholar 

  • McMaster GS, Jow WM, Kummerow J. 1982. Response of Adenostoma fasciculatum and Ceanothus greggii chaparral to nutrient additions. J Ecol 70:745–56. doi:10.2307/2260102.

    Article  Google Scholar 

  • Miller AE, Schimel JP, Sickman JO, Skeen K, Meixner T, Melack JM. 2009. Seasonal variation in nitrogen uptake and turnover in two high-elevation soils: mineralization responses are site-dependent. Biogeochemistry 93:253–70. doi:10.1007/s10533-009-9301-4.

    Article  CAS  Google Scholar 

  • Miller JD, Thode AE. 2007. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens Environ 109:66–80. doi:10.1016/j.rse.2006.12.006.

    Article  Google Scholar 

  • Moritz MA. 2003. Spatiotemporal analysis of controls on shrubland fire regimes: age dependency and fire hazard. Ecology 84:351–61. doi:10.1890/0012-9658(2003)084[0351:SAOCOS]2.0.CO;2.

    Article  Google Scholar 

  • Moritz MA. 1997. Analyzing extreme disturbance events: fire in los padres national forest. Ecol Appl 7:1252–62. doi:10.1890/1051-0761(1997)007[1252:AEDEFI]2.0.CO;2.

    Article  Google Scholar 

  • Neary DG, Klopatek CC, DeBano LF, Ffolliott PF. 1999. Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag 122:51–71. doi:10.1016/S0378-1127(99)00032-8.

    Article  Google Scholar 

  • NRCS. 2015. Description of Gridded Soil Survey Geographic (gSSURGO) Database|NRCS [WWW Document]. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=NRCS142P2_053628 (accessed 5.17.15).

  • O’Leary JF. 1988. Habitat differentiation among herbs in postburn Californian chaparral and coastal sage scrub. Am Midl Nat 120:41–9. doi:10.2307/2425885.

    Article  Google Scholar 

  • Parker SS, Schimel JP. 2011. Soil nitrogen availability and transformations differ between the summer and the growing season in a California grassland. Appl Soil Ecol 48:185–92. doi:10.1016/j.apsoil.2011.03.007.

    Article  Google Scholar 

  • Quinn GP, Keough MJ. 2002. Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Raison RJ. 1979. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant Soil 51:73–108. doi:10.1007/BF02205929.

    Article  CAS  Google Scholar 

  • Riggan PJ, Goode S, Jacks PM, Lockwood RN. 1988. Interaction of fire and community development in chaparral of Southern California. Ecol Monogr 58:156–76. doi:10.2307/2937023.

    Article  Google Scholar 

  • Roth KL, Dennison PE, Roberts DA. 2012. Comparing endmember selection techniques for accurate mapping of plant species and land cover using imaging spectrometer data. Remote Sens Environ 127:139–52. doi:10.1016/j.rse.2012.08.030.

    Article  Google Scholar 

  • Rundel PW, Parsons DJ. 1984. Post-fire uptake of nutrients by diverse ephemeral herbs in chamise chaparral. Oecologia 61:285–8. doi:10.1007/BF00396774.

    Article  Google Scholar 

  • Schimel JP, Bennett J. 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602. doi:10.1890/03-8002.

    Article  Google Scholar 

  • Schlesinger WH, Gill DS. 1980. Biomass, production, and changes in the availability of light, water, and nutrients during the development of pure stands of the chaparral shrub, Ceanothus Megacarpus, after fire. Ecology 61:781–9. doi:10.2307/1936748.

    Article  Google Scholar 

  • Schlesinger WH, Gray JT, Gilliam FS. 1982. Atmospheric deposition processes and their importance as sources of nutrients in a chaparral ecosystem of southern California. Water Resour Res 18:623–9. doi:10.1029/WR018i003p00623.

    Article  CAS  Google Scholar 

  • Sheldrick BH, Wang C. 1993. Particle size distribution. Soil Sample Methods Anal. 1993:499–511.

    Google Scholar 

  • Ste-Marie C, Paré D. 1999. Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biol Biochem 31:1579–89. doi:10.1016/S0038-0717(99)00086-3.

    Article  CAS  Google Scholar 

  • Swift CC. 1991. Nitrogen utilization strategies of post-fire annual species in the chaparral. UCLA.

  • Syphard AD, Clarke KC, Franklin J. 2007a. Simulating fire frequency and urban growth in southern California coastal shrublands, USA. Landsc Ecol 22:431–45.

    Article  Google Scholar 

  • Syphard AD, Radeloff VC, Keeley JE, Hawbaker TJ, Clayton MK, Stewart SI, Hammer RB. 2007b. Human influence on california fire regimes. Ecol Appl 17:1388–402. doi:10.1890/06-1128.1.

    Article  PubMed  Google Scholar 

  • Thanos CA, Rundel PW. 1995. Fire-followers in chaparral: nitrogenous compounds trigger seed germination. J Ecol 83:207–16. doi:10.2307/2261559.

    Article  Google Scholar 

  • Valeron B, Meixner T. 2010. Overland flow generation in chaparral ecosystems: temporal and spatial variability. Hydrol Process 24:65–75. doi:10.1002/hyp.7455.

    Google Scholar 

  • Van Wagtendonk JW, Root RR, Key CH. 2004. Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sens Environ 92:397–408.

    Article  Google Scholar 

  • Verkaik I, Rieradevall M, Cooper SD, Melack JM, Dudley TL, Prat N. 2013. Fire as a disturbance in mediterranean climate streams. Hydrobiologia 719:353–82. doi:10.1007/s10750-013-1463-3.

    Article  CAS  Google Scholar 

  • Vitousek P. 1982. Nutrient cycling and nutrient use efficiency. Am Nat 119:553–72.

    Article  Google Scholar 

  • Vitousek PM, Melillo JM. 1979. Nitrate losses from disturbed forests: patterns and mechanisms. For. Sci. 25:605–19.

    Google Scholar 

  • Vogl RJ. 1982. Chaparral succession 1.

  • Zak DR, Groffman PM, Pregitzer KS, Christensen S, Tiedje JM. 1990. The Vernal dam: plant-microbe competition for nitrogen in Northern Hardwood Forests. Ecology 71:651–6. doi:10.2307/1940319.

    Article  Google Scholar 

  • Zedler PH. 1995. Fire frequency in southern California shrublands: biological effects and management options. Brushfires Calif. Wildlands Ecol Resour Manag Int Assoc Wildland Fire Fairfld Wash USA, pp 101–112.

Download references

Acknowledgements

The authors offer their thanks to John Melack for support and discussions that improved the sampling design and analysis for this study; to Viviane Vincent, Amanda Golay, Sarah Kullbom, Megan Lipps, Daniel Keck, Bailey Smith, Spencer Pritchard, Emma Panish, Brittany Luttrell, Alyssa Raley, and Matt Mass for their field and laboratory assistance; and to Jennifer King and Dad Roux-Michollet for providing laboratory instruments and instruction. The authors also thank the editor and anonymous reviewers for their constructive comments, which helped to improve the manuscript. This study was supported by the NSF RAPID Grant (DEB-0952599), and the Santa Barbara Coastal Long-Term Ecological Research project (OCE-0620276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin J. Hanan.

Additional information

Author contributions

Erin Hanan: designed study, performed research, analyzed data, wrote paper. Carla D’Antonio: helped develop study, provided vegetation data, assisted with editing paper. Dar Roberts: helped develop study, provided remote sensing imagery, assisted with editing paper. Joshua Schimel: helped develop study, assisted with editing paper.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Online Appendix (DOCX 36 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanan, E.J., D’Antonio, C.M., Roberts, D.A. et al. Factors Regulating Nitrogen Retention During the Early Stages of Recovery from Fire in Coastal Chaparral Ecosystems. Ecosystems 19, 910–926 (2016). https://doi.org/10.1007/s10021-016-9975-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-016-9975-0

Keywords

Navigation