Skip to main content
Log in

Differential Resilience of Soil Microbes and Ecosystem Functions Following Cessation of Long-Term Fertilization

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Nitrogen (N) from anthropogenic sources has dramatically increased in terrestrial ecosystems globally. Although belowground microbial processes and events that release N into the atmosphere, such as fire, could support ecosystem resilience to eutrophication, little is known about how these factors might affect N loss following chronic fertilization, thus promoting ecosystem recovery. We studied how N pools, N-cycling potential rates and their affiliated microbial populations, and microbial community composition responded to the factorial effects of cessation of 30 years of chronic N fertilization and annual burning at a tallgrass prairie. Soil N availability in previously fertilized plots recovered by 86% (using never-fertilized control plots as a 100% recovery reference), while plant and microbial biomass did not change. Nitrification potential recovered (80%), and denitrification potential partially recovered (50%), in previously fertilized plots. There were differential responses among key groups of nitrifiers (archaea vs. bacteria) and denitrifiers (nosZ clade I vs. clade II from Anaeromyxobacter dehalogenans) to long-term N fertilization and cessation despite the whole microbial community composition not shifting significantly after fertilization ceased. Also, N-cycling potentials were consistently higher in unburned prairie. Together, results suggest that fire is a prominent mechanism for ecosystem N removal in annually burned prairie, while N-cycling microbes will have an important role in the absence of fire; however, the recovery to pre-fertilized condition, with or without fire, will take longer than 1 year. Overall, differential resilience of biotic populations and processes can potentially shape different outcomes of soil N loss and tallgrass prairie ecosystem recovery from long-term N fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data Availability

Data are available at http://lter.konza.ksu.edu/ and https://www.ncbi.nlm.nih.gov/.

References

  • Ajwa HA, Dell CJ, Rice CW. 1999. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization. Soil Biol Biochem 31:769–777.

    Article  CAS  Google Scholar 

  • Angeler DG, Allen CR. 2016. Quantifying resilience. J Appl Ecology 53:617–624.

    Article  Google Scholar 

  • Baer SG, Blair JM. 2008. Grassland establishment under varying resource availability: a test of positive and negative feedback. Ecology 89:1859–1871.

    Article  PubMed  Google Scholar 

  • Bardgett RD, Caruso T. 2020. Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Philos Trans R Soc B Biol Sci 375:20190112.

    Article  CAS  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw 67.

  • Blair J, Zeglin L. 2020. PBB01 Belowground Plot Experiment: Aboveground net primary productivity of tallgrass prairie based on accumulated plant biomass ver 10.

  • Blair JM. 1997. Fire, N availability, and plant response in grasslands: a test of the transient maxima hypothesis. Ecology 78:2359–2368.

    Article  Google Scholar 

  • Bond WJ. 2008. What limits trees in C4 grasslands and savannas? Ann Rev Ecol Evol System 39:641–659.

    Article  Google Scholar 

  • Briggs JM, Knapp AK, Blair JM, Heisler JL, Hoch GA, Lett MS, McCarron JK. 2005. An ecosystem in transition: causes and consequences of the conversion of mesic grassland to shrubland. BioScience 55:243–254.

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS. 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842.

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carey CJ, Dove NC, Beman JM, Hart SC, Aronson EL. 2016. Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea. Soil Biol Biochem 99:158–166.

    Article  CAS  Google Scholar 

  • Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. 2017. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol 2:16242.

    Article  CAS  Google Scholar 

  • Carson CM, Jumpponen A, Blair JM, Zeglin LH. 2019. Soil fungal community changes in response to long-term fire cessation and N fertilization in tallgrass prairie. Fungal Ecol 41:45–55.

    Article  Google Scholar 

  • Carson CM, Zeglin LH. 2018. Long-term fire management history affects N-fertilization sensitivity, but not seasonality, of grassland soil microbial communities. Soil Biol Biochem 121:231–239.

    Article  CAS  Google Scholar 

  • Carson MA. 2013. Responses to long-term fertilization and burning: Impacts on nutrient dynamics and microbial composition in a tallgrass prairie.

  • Clark CM, Hobbie SE, Venterea R, Tilman D. 2009. Long-lasting effects on nitrogen cycling 12 years after treatments cease despite minimal long-term nitrogen retention. Glob Change Biol 15:1755–1766.

    Article  Google Scholar 

  • Clark CM, Tilman D. 2008. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715.

    Article  CAS  PubMed  Google Scholar 

  • Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ. 2015. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci 8:776–779.

    Article  CAS  Google Scholar 

  • DeAngelis KM, Silver WL, Thompson AW, Firestone MK. 2010. Microbial communities acclimate to recurring changes in soil redox potential status. Environ Microbiol 12:3137–3149.

    Article  CAS  PubMed  Google Scholar 

  • Dell CJ, Williams MA, Rice CW. 2005. Partitioning of nitrogen over five growing seasons in tallgrass prairie. Ecology 86:1280–1287.

    Article  Google Scholar 

  • Di HJ, Cameron KC, Shen J-P, Winefield CS, O’Callaghan M, Bowatte S, He J-Z. 2010. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol 72:386–394.

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Jackson JA, Vilgalys R, Jackson RB. 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firestone MK, Fierstone RB, Tiedje JM. 1980. Nitrous oxide from soil denitrification: factors controlling its biological production. Science 208:749–751.

    Article  CAS  PubMed  Google Scholar 

  • Fixen PE, West FB. 2002. Nitrogen fertilizers: meeting contemporary challenges. AMBIO J Hum Environ 31:169–76.

    Article  Google Scholar 

  • Folke C, Holling CS, Perrings C. 1996. Biological diversity, ecosystems, and the human scale. Ecol Appl 6:1018–1024.

    Article  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892.

    Article  CAS  PubMed  Google Scholar 

  • Garcia FO, Rice CW. 1994. Microbial biomass dynamics in tallgrass prairie. Soil Sci Soc Am J 58:816–823.

    Article  Google Scholar 

  • Gilliam FS, Burns DA, Driscoll CT, Frey SD, Lovett GM, Watmough SA. 2019. Decreased atmospheric nitrogen deposition in eastern North America: predicted responses of forest ecosystems. Environ Pollut 244:560–574.

    Article  CAS  PubMed  Google Scholar 

  • Gough L, Osenberg CW, Gross KL, Collins SL. 2000. Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos 89:428–439.

    Article  Google Scholar 

  • Grimm V, Wissel C. 1997. Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion. Oecologia 109:323–334.

    Article  CAS  PubMed  Google Scholar 

  • Groffman PM, Holland EA, Myrold DD, Robertson GP, Zou X. 1999. Denitrification. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P, editors. Standard Soil Methods for Long-Term Ecological Research. pp 272–88.

  • Hallin S, Philippot L, Löffler FE, Sanford RA, Jones CM. 2018. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol 26:43–55.

    Article  CAS  PubMed  Google Scholar 

  • Henry S, Bru D, Stres B, Hallet S, Philippot L. 2006. Quantitative detection of the nosZ Gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72:5181–5189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgson D, McDonald JL, Hosken DJ. 2015. What do you mean, ‘resilient’? Trends Ecol Evol 30:503–506.

    Article  PubMed  Google Scholar 

  • Hood-Nowotny R, Hinko-Najera Umana N, Inselbacher E, Oswald-Lachouani P, Wanek W. 2010. Alternative Methods for measuring inorganic, organic, and total dissolved nitrogen in soil. Soil Sci Soc Am J 74:1018–1027.

    Article  CAS  Google Scholar 

  • Jones CM, Spor A, Brennan FP, Breuil MC, Bru D, Lemanceau P, Griffiths B, Hallin S, Philippot L. 2014. Recently identified microbial guild mediates soil N2O sink capacity. Nat Clim Change 4:801–805.

    Article  CAS  Google Scholar 

  • Jung M-Y, Park S-J, Min D, Kim J-S, Rijpstra WIC, Sinninghe Damsté JS, Kim G-J, Madsen EL, Rhee S-K. 2011. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group i.1a from an agricultural soil. Appl Environ Microbiol 77:8635–8647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaye JP, Hart SC. 1997. Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143.

    Article  CAS  PubMed  Google Scholar 

  • Klappenbach JA, Dunbar JM, Schmidt TM. 2000. rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp AK. 1984. Post-burn differences in solar radiation, leaf temperature and water stress influencing production in a lowland tallgrass prairie. Am J Bot 71:220–227.

    Article  Google Scholar 

  • Knapp AK. 1985. Effect of fire and drought on the ecophysiology of andropogon gerardii and panicum virgatum in a tallgrass prairie. Ecology 66:1309–1320.

    Article  Google Scholar 

  • Kuzyakov Y, Xu X. 2013. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–669.

    Article  CAS  PubMed  Google Scholar 

  • LeBauer DS, Treseder KK. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379.

    Article  PubMed  Google Scholar 

  • Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JMH, McCulley RL, La Pierre K, Risch AC, Seabloom EW, Schütz M, Steenbock C, Stevens CJ, Fierer N. 2015. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci 112:10967–10972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenth R V. 2016. Least-squares means: the R package lsmeans. J Stat Softw 69.

  • Levičnik-Höfferle Š, Nicol GW, Ausec L, Mandić-Mulec I, Prosser JI. 2012. Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen. FEMS Microbiol Ecol 80:114–123.

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Jiang L, Yang S, Wang Z, Tian R, Peng Z, Chen Y, Zhang X, Kuang J, Ling N, Wang S, Liu L. 2020. Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment. Ecology:e03053.

  • Loreau M. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808.

    Article  CAS  PubMed  Google Scholar 

  • Lovett GM, Goodale CL, Ollinger SV, Fuss CB, Ouimette AP, Likens GE. 2018. Nutrient retention during ecosystem succession: a revised conceptual model. Front Ecol Environ 16:532–538.

    Article  Google Scholar 

  • Lu M, Yang Y, Luo Y, Fang C, Zhou X, Chen J, Yang X, Li B. 2011. Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytol 189:1040–1050.

    Article  CAS  PubMed  Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–979.

    Article  CAS  PubMed  Google Scholar 

  • McCulley RL, Archer SR, Boutton TW, Hons FM, Zuberer DA. 2004. Soil respiration and nutrient cycling in wooded communities developing in grassland. Ecology 85:2804–2817.

    Article  Google Scholar 

  • McKinley DC, Blair JM. 2008. Woody plant encroachment by juniperus virginiana in a mesic native grassland promotes rapid carbon and nitrogen accrual. Ecosystems 11:454–468.

    Article  CAS  Google Scholar 

  • Mosier AC, Francis CA. 2008. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ Microbiol 10:3002–3016.

    Article  CAS  PubMed  Google Scholar 

  • Norris MD, Blair JM, Johnson LC. 2001. Land cover change in eastern Kansas: litter dynamics of closed-canopy eastern redcedar forests in tallgrass prairie. Can J Bot 79:214–222.

    Google Scholar 

  • O’Sullivan OS, Horswill P, Phoenix GK, Lee JA, Leake JR. 2011. Recovery of soil nitrogen pools in species-rich grasslands after 12 years of simulated pollutant nitrogen deposition: a 6-year experimental analysis. Glob Change Biol 17:2615–2628.

    Article  Google Scholar 

  • Ojima DS, Schimel DS, Parton WJ, Owensby CE. 1994. Long- and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry 24:67–84.

    Article  Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2019. Package ‘vegan’.

  • Olff H, Berendse F, De Visser W. 1994. Changes in nitrogen mineralization, tissue nutrient concentrations and biomass compartmentation after cessation of fertilizer application to mown grassland. J Ecol 82:611.

    Article  CAS  Google Scholar 

  • Ouyang Y, Evans SE, Friesen ML, Tiemann LK. 2018. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: a meta-analysis of field studies. Soil Biol Biochem 127:71–78.

    Article  CAS  Google Scholar 

  • Prosser JI. 1990. Autotrophic nitrification in bacteria. Adv Microb Physiol 30:125–181.

    Article  Google Scholar 

  • Prosser JI, Nicol GW. 2012. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531.

    Article  CAS  PubMed  Google Scholar 

  • Raison RJ, Khanna PK, Woods PV. 1985. Mechanisms of element transfer to the atmosphere during vegetation fires. Can J For Res 15:132–140.

    Article  CAS  Google Scholar 

  • Ramirez KS, Craine JM, Fierer N. 2012. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Change Biol 18:1918–1927.

    Article  Google Scholar 

  • Ratajczak Z, Carpenter SR, Ives AR, Kucharik CJ, Ramiadantsoa T, Stegner MA, Williams JW, Zhang J, Turner MG. 2018. Abrupt Change in ecological systems: inference and diagnosis. Trends Ecol Evol 33:513–526.

    Article  PubMed  Google Scholar 

  • Reed HE, Seastedt TR, Blair JM. 2005. Ecological consequences of C4 grass invasion of a C4 grassland: a dilemma for management. Ecol Appl 15:1560–1569.

    Article  Google Scholar 

  • Rice CW, Todd TC, Blair JM, Seastedt TR, Ramundo RA, Wilson GWT. 1998. Belowground biology and processes. In: Knapp AK, Briggs JM, Hartnett DC, Collins SL, Eds. Grassland dynamics: long-term ecological research in tallgrass prairie, . Oxford: Oxford University Press.

    Google Scholar 

  • Rocca JD, Hall EK, Lennon JT, Evans SE, Waldrop MP, Cotner JB, Nemergut DR, Graham EB, Wallenstein MD. 2015. Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed. ISME J 9:1693–1699.

    Article  PubMed  CAS  Google Scholar 

  • Roley SS, Duncan DS, Liang D, Garoutte A, Jackson RD, Tiedje JM, Robertson GP. 2018. Associative nitrogen fixation (ANF) in switchgrass (Panicum virgatum) across a nitrogen input gradient. Sainju UM, editor. PLOS One 13:e0197320.

  • Rotthauwe J-H, Witzel K-P, Liesack W. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanford RA, Wagner DD, Wu Q, Chee-Sanford JC, Thomas SH, Cruz-Garcia C, Rodriguez G, Massol-Deya A, Krishnani KK, Ritalahti KM, Nissen S, Konstantinidis KT, Loffler FE. 2012. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc Natl Acad Sci 109:19709–19714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffer M, Carpenter SR, Dakos V, Van Nes EH. 2015. Generic indicators of ecological resilience: inferring the chance of a critical transition. Annu Rev Ecol Evol Syst 46:145–167.

    Article  Google Scholar 

  • Schimel JP, Bennett J. 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602.

    Article  Google Scholar 

  • Schlesinger WH. 2009. On the fate of anthropogenic nitrogen. Proc Natl Acad Sci 106:203–208.

    Article  CAS  PubMed  Google Scholar 

  • Seastedt TR, Briggs JM, Gibson DJ. 1991. Controls of nitrogen limitation in tallgrass prairie. Oecologia 87:72–79.

    Article  CAS  PubMed  Google Scholar 

  • Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, Huber DH, Langenheder S, Lennon JT, Martiny JBH, Matulich KL, Schmidt TM, Handelsman J. 2012. Fundamentals of microbial community resistance and resilience. Front Microbiol 3:1–19.

    Article  Google Scholar 

  • Silva LCR, Hoffmann WA, Rossatto DR, Haridasan M, Franco AC, Horwath WR. 2013. Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant Soil 373:829–842.

    Article  CAS  Google Scholar 

  • Smith MD, Knapp AK, Collins SL. 2009. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90:3279–3289.

    Article  PubMed  Google Scholar 

  • Stevens CJ. 2016. How long do ecosystems take to recover from atmospheric nitrogen deposition? Biol Conserv 200:160–167.

    Article  Google Scholar 

  • Stevens CJ, Dise NB, Mountford JO, Gowing DJ. 2004. Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879.

    Article  CAS  PubMed  Google Scholar 

  • Stienstra AW, Klein Gunnewiek P, Laanbroek HJ. 1994. Repression of nitrification in soils under a climax grassland vegetation. FEMS Microbiol Ecol 14:45–52.

    Article  CAS  Google Scholar 

  • Strickland MS, Rousk J. 2010. Considering fungal:bacterial dominance in soils: methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395.

    Article  CAS  Google Scholar 

  • Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S. 2005. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci 102:4387–4392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor AE, Zeglin LH, Dooley S, Myrold DD, Bottomley PJ. 2010. Evidence for different contributions of archaea and bacteria to the ammonia-oxidizing potential of diverse oregon soils. Appl Environ Microbiol 76:7691–7698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman D, Wedin D. 1991. Plant traits and resource reduction for five grasses growing on a nitrogen gradient. Ecology 72:685–700.

    Article  Google Scholar 

  • Treseder KK. 2008. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120.

    Article  PubMed  Google Scholar 

  • Turner CL, Blair JM, Schartz RJ, Neel JC. 1997. Soil N and plant responses to fire, topography, and supplemental N in tallgrass prairie. Ecology 78:1832–1843.

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS. 1987. An Extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707.

    Article  CAS  Google Scholar 

  • Verhagen FJM, Laanbroek HJ, Woldendrop JW. 1995. Competition for ammonium between plant roots and nitrifying and heterotrophic bacteria and the effects of protozoan grazing. Plant Soil 170:241–250.

    Article  CAS  Google Scholar 

  • Verhamme DT, Prosser JI, Nicol GW. 2011. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J 5:1067–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Větrovský T, Baldrian P. 2013. The Variability of the 16S rRNA Gene in Bacterial Genomes and Its Consequences for Bacterial Community Analyses. Neufeld J, editor. PLoS ONE 8:e57923.

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. 1997. Human domination of earth’s ecosystems. Science 277:494–499.

    Article  CAS  Google Scholar 

  • Wallenstein MD, Myrold DD, Firestone M, Voytek M. 2006. Environmental controls on denitrifying communities and denitrification rates: Insights from molecular methods. Ecol Appl 16:2143–2152.

    Article  PubMed  Google Scholar 

  • Wertz S, Leigh AKK, Grayston SJ. 2012. Effects of long-term fertilization of forest soils on potential nitrification and on the abundance and community structure of ammonia oxidizers and nitrite oxidizers. FEMS Microbiol Ecol 79:142–154.

    Article  CAS  PubMed  Google Scholar 

  • Zeglin LH, Bottomley PJ, Jumpponen A, Rice CW, Arango M, Lindsley A, McGowan A, Mfombep P, Myrold DD. 2013. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales. Ecology 94:2334–2345.

    Article  CAS  PubMed  Google Scholar 

  • Zeglin LH, Myrold DD. 2013. Fate of Decomposed fungal cell wall material in organic horizons of old-growth douglas-fir forest soils. Soil Sci Soc Am J 77:489–500.

    Article  CAS  Google Scholar 

  • Zhang T, Chen HYH, Ruan H. 2018. Global negative effects of nitrogen deposition on soil microbes. ISME J 12:1817–1825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge our neighbors, the Kaw Nation, whose ancestors’ stewardship of the land that Konza Prairie Biological Station sits on has benefitted past and present ecological research. We thank the personnel at Konza Prairie Biological Station and the Konza Prairie LTER program for maintaining the Belowground Plot Experiment since 1986; Dr. Walter Dodds for access to the gas chromatograph; Dr. Alina Akhunova at the Kansas State Integrated Genomics Facility for sequencing support; Dr. Michael Sadowsky for supplying the Bradyrhizobium japonicum USDA 110; Dr. John Blair for feedback on this manuscript; Jordyn Fales and Jessica Stanford for fieldwork support; and the anonymous reviewers of this manuscript for their constructive feedback. This is publication ### from the Kansas Agricultural Experiment Station.

Funding

This work was funded by Kansas State University startup funds to LHZ and the Konza Prairie LTER program (NSF DEB-1440484).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Nieland.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 58 KB)

Supplementary file2 (DOCX 32497 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nieland, M.A., Moley, P., Hanschu, J. et al. Differential Resilience of Soil Microbes and Ecosystem Functions Following Cessation of Long-Term Fertilization. Ecosystems 24, 2042–2060 (2021). https://doi.org/10.1007/s10021-021-00633-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00633-9

Keywords

Navigation