Skip to main content

Advertisement

Log in

The Effects of Soil Bacterial Community Structure on Decomposition in a Tropical Rain Forest

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Soil microorganisms are key drivers of terrestrial biogeochemical cycles, yet it is still unclear how variations in soil microbial community composition influence many ecosystem processes. We investigated how shifts in bacterial community composition and diversity resulting from differences in carbon (C) availability affect organic matter decomposition by conducting an in situ litter manipulation experiment in a tropical rain forest in Costa Rica. We used bar-coded pyrosequencing to characterize soil bacterial community composition in litter manipulation plots and performed a series of laboratory incubations to test the potential functional significance of community shifts on organic matter decomposition. Despite clear effects of the litter manipulation on soil bacterial community composition, the treatments had mixed effects on microbial community function. Distinct communities varied in their ability to decompose a wide range of C compounds, and functional differences were related to both the relative abundance of the two most abundant bacterial sub-phyla (Acidobacteria and Alphaproteobacteria) and to variations in bacterial alpha-diversity. However, distinct communities did not differ in their ability to decompose native dissolved organic matter (DOM) substrates that varied in quality and quantity. Our results show that although resource-driven shifts in soil bacterial community composition have the potential to influence decomposition of specific C substrates, those differences may not translate to differences in DOM decomposition rates in situ. Taken together, our results suggest that soil bacterial communities may be either functionally dissimilar or equivalent during decomposition depending on the nature of the organic matter being decomposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aerts R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–49.

    Article  Google Scholar 

  • Balser TC, Firestone MK. 2005. Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry 73:395–415.

    Article  CAS  Google Scholar 

  • Balser TC, Wixon D, Moritz LK, Lipps L. 2010. The microbiology of natural soils. In: Dixon GR, Tilston EL, Eds. Soil microbiology and sustainable crop production. Dordrecht: Springer. p 27–57.

    Chapter  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ. 2008. Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–14.

    Article  PubMed  CAS  Google Scholar 

  • Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK. 2005. The contribution of species richness and composition to bacterial services. Nature 436:1157–60.

    Article  PubMed  CAS  Google Scholar 

  • Berrange JP, Thorpe RS. 1988. The geology, geochemistry and emplacement of the cretaceous tertiary ophiolitic Nicoya complex of the Osa Peninsula, Southern Costa-Rica. Tectonophysics 147:193–220.

    Article  CAS  Google Scholar 

  • Brant JB, Sulzman EW, Myrold DD. 2006. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biol Biochem 38:2219–32.

    Article  CAS  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS. 1985. Chloroform fumigation and the release of soil-nitrogen—a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–42.

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–6.

    Article  PubMed  CAS  Google Scholar 

  • Carney KM, Matson PA. 2005. Plant communities, soil microorganisms, and soil carbon cycling: does altering the world belowground matter to ecosystem functioning? Ecosystems 8:928–40.

    Article  CAS  Google Scholar 

  • Cavigelli MA, Robertson GP. 2000. The functional significance of denitrifier community composition in a terrestrial ecosystem. Ecology 81:1402–14.

    Article  Google Scholar 

  • Cleveland CC, Townsend AR. 2006. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc Natl Acad Sci USA 103:10316–21.

    Article  PubMed  CAS  Google Scholar 

  • Cleveland CC, Neff JC, Townsend AR, Hood E. 2004. Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems 7:175–285.

    Article  Google Scholar 

  • Cleveland CC, Reed SC, Townsend AR. 2006. Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87:492–503.

    Article  PubMed  Google Scholar 

  • Cleveland CC, Nemergut DR, Schmidt SK, Townsend AR. 2007. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82:229–40.

    Article  CAS  Google Scholar 

  • Cleveland CC, Wieder WR, Reed SC, Townsend AR. 2010. Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere. Ecology 91:2313–23.

    Article  PubMed  Google Scholar 

  • Condron L, Stark C, O’Callaghan M, Clinton P, Huang Z. 2010. The role of microbial communities in the formation and decomposition of soil organic matter. In: Dixon GR, Tilston EL, Eds. Soil microbiology and sustainable crop production. Dordrecht: Springer. p 81–118.

    Chapter  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, Van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–71.

    Article  PubMed  Google Scholar 

  • Couteaux M-M, Bottner P, Berg B. 1995. Litter decomposition, climate and liter quality. Trends Ecol Evol 10:63–6.

    Article  Google Scholar 

  • Currie WS, Aber JD. 1997. Modeling leaching as a decomposition process in humid montane forests. Ecology 78:1844–60.

    Article  Google Scholar 

  • Degens BP, Harris JA. 1997. Development of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol Biochem 29:1309–20.

    Article  CAS  Google Scholar 

  • Degens BP, Schipper LA, Sparling GP, Vojvodic-Vukovic M. 2000. Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol Biochem 32:189–96.

    Article  CAS  Google Scholar 

  • Faith DP. 1992. Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10.

    Article  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF. 2008. The microbial engines that drive Earth’s biogeochemical cycles. Science 320:1034–9.

    Article  PubMed  CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB. 2007a. Toward an ecological classification of soil bacteria. Ecology 88:1354–64.

    Article  PubMed  Google Scholar 

  • Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB. 2007b. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73:7059–66.

    Article  PubMed  CAS  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ. 2000. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Change Biol 6:751–65.

    Article  Google Scholar 

  • Goslee SC, Urban DL. 2007. The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19.

    Google Scholar 

  • Grandy AS, Neff JC. 2008. Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci Total Environ 404:297–307.

    Article  PubMed  CAS  Google Scholar 

  • Grandy AS, Strickland MS, Lauber CL, Bradford MA, Fierer N. 2009. The influence of microbial communities, management, and soil texture on soil organic matter chemistry. Geoderma 150:278–86.

    Article  CAS  Google Scholar 

  • Groffman PM, Bohlen PJ. 1999. Soil and sediment biodiversity. Bioscience 49:139–48.

    Article  Google Scholar 

  • Hill TCJ, Walsh KA, Harris JA, Moffett BF. 2003. Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol 43:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Hooper DU, Chapin FSIII, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35.

    Article  Google Scholar 

  • Joergensen RG, Wichern F. 2008. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977–91.

    Article  CAS  Google Scholar 

  • Jongman RH, Braak CJF, Van Tongeren OFR. 1995. Data analysis in community and landscape ecology. New edition. Cambridge, NY: Cambridge University Press.

    Book  Google Scholar 

  • Kappelle M, Castro M, Acevedo H, Gonza′ lez L, Monge H. 2002. Ecosystems of the Osa conservation area (ACOSA). Santo Domingo de Heredia: Instituto Nacional Biodiversidad (INBio).

    Google Scholar 

  • Keiser AD, Strickland MS, Fierer N, Bradford MA. 2011. The effect of resource history on the functioning of soil microbial communities is maintained across time. Biogeosci Discuss 8:1643–67.

    Article  Google Scholar 

  • Kemmitt SJ, Lanyon CV, Waite IS, Wen Q, Addiscott TM, Bird NRA, O’Donnell AG, Brookes PC. 2008. Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—a new perspective. Soil Biol Biochem 40:61–73.

    Article  CAS  Google Scholar 

  • Kiem R, Knicker H, Körschens M, Kögel-Knabner I. 2000. Refractory organic carbon in C-depleted arable soils, as studied by 13C NMR spectroscopy and carbohydrate analysis. Org Geochem 31:655–68.

    Article  CAS  Google Scholar 

  • Langenheder S, Prosser JI. 2008. Resource availability influences the diversity of a functional group of heterotrophic soil bacteria. Environ Microbiol 10:2245–56.

    Article  PubMed  CAS  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–20.

    Article  PubMed  CAS  Google Scholar 

  • Lichstein JW. 2007. Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecol 188:117–31.

    Article  Google Scholar 

  • Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–35.

    Article  PubMed  CAS  Google Scholar 

  • Magurran AE. 2004. Measuring biological diversity. Malden, MA: Blackwell Pub.

    Google Scholar 

  • McArdle BH, Anderson MJ. 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–7.

    Article  Google Scholar 

  • McGuire KL, Treseder KK. 2010. Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biol Biochem 42:529–35.

    Article  CAS  Google Scholar 

  • Meentemeyer V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–72.

    Article  CAS  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–6.

    Article  CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G. 2003. Microbial diversity and soil functions. Eur J Soil Sci 54:655–70.

    Article  Google Scholar 

  • Neff JC, Asner GP. 2001. Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems 4:29–48.

    Article  CAS  Google Scholar 

  • Nemergut DR, Cleveland CC, Wieder WR, Washenberger CL, Townsend AR. 2010. Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest. Soil Biol Biochem 42:2153–60.

    Article  CAS  Google Scholar 

  • O’Donnell AG, Colvan SR, Malosso E, Supaphol S. 2005. Twenty years of molecular analysis of bacterial communities in soils and what have we learned about function? In: Bardgett RD, Ed. Biological diversity and function in soils. Cambridge, UK: Cambridge University Press. p 44–56.

    Chapter  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2010. Vegan: Community Ecology Package. R package version 1.17–2. http://CRAN.R-project.org/package=vegan

  • Parton WJ, Schimel DS, Cole CV, Ojima DS. 1994. A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. In: Bryant RB, Arnold RW, Eds. Quantitative modeling of soil forming processes. Madison, WI: Soil Science Society of America.

    Google Scholar 

  • Paterson E, Sim A, Osborne SM, Murray PJ. 2011. Long-term exclusion of plant-inputs to soil reduces the functional capacity of microbial communities to mineralise recalcitrant root-derived carbon sources. Soil Biol Biochem 43:1873–80.

    Article  CAS  Google Scholar 

  • Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, Hallin S. 2010. The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol 8:523–9.

    Article  PubMed  CAS  Google Scholar 

  • Reed HE, Martiny JBH. 2007. Testing the functional significance of microbial composition in natural communities. FEMS Microbiol Ecol 62:161–70.

    Article  PubMed  CAS  Google Scholar 

  • Rousk J, Brookes PC, Glanville HC, Jones DL. 2011. Lack of correlation between turnover of low-molecular-weight dissolved organic carbon and differences in microbial community composition or growth across a soil pH gradient. Appl Environ Microbiol 77:2791–5.

    Article  PubMed  CAS  Google Scholar 

  • Schimel JP. 1995. Ecosystem consequences of microbial diversity and community structure. In: Chapin FSIII, Korner C, Eds. Arctic and alpine biodiversity: patterns. Causes and ecosystem consequences. Berlin: Springer-Verlag. p 239–54.

    Chapter  Google Scholar 

  • Schimel JP, Gulledge JAY. 1998. Microbial community structure and global trace gases. Glob Change Biol 4:745–58.

    Article  Google Scholar 

  • Schimel JP, Bennett J, Fierer N. 2005. Microbial community composition and soil nitrogen cycling: is there really a connection? In: Bardgett RD, Hopkins DW, Usher MB, Eds. Biological diversity and function in soils. Cambridge, UK: Cambridge University Press. p 171–88.

    Chapter  Google Scholar 

  • Smit E, Leeflang P, Gommans S, van den Broek J, van Mil S, Wernars K. 2001. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl Environ Microbiol 67:2284–91.

    Article  PubMed  CAS  Google Scholar 

  • Strickland MS, Lauber C, Fierer N, Bradford MA. 2009. Testing the functional significance of microbial community composition. Ecology 90:441–51.

    Article  PubMed  Google Scholar 

  • Taylor BR, Parkinson D, Parsons WFJ. 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97–104.

    Article  Google Scholar 

  • Tiedje JM, Asuming-Brempong S, Nüsslein K, Marsh TL, Flynn SJ. 1999. Opening the black box of soil microbial diversity. Appl Soil Ecol 13:109–22.

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19:703–7.

    Article  CAS  Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK. 2000. Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–46.

    Article  CAS  Google Scholar 

  • Waldrop MP, Zak DR, Blackwood CB, Curtis CD, Tilman D. 2006. Resource availability controls fungal diversity across a plant diversity gradient. Ecol Lett 9:1127–35.

    Article  PubMed  Google Scholar 

  • Wickings K, Stuart Grandy A, Reed S, Cleveland C. 2011. Management intensity alters decomposition via biological pathways. Biogeochemistry 104:365–79.

    Article  Google Scholar 

  • Wieder WR, Cleveland CC, Townsend AR. 2008. Tropical tree species composition affects the oxidation of dissolved organic matter from litter. Biogeochemistry 88:127–38.

    Article  Google Scholar 

  • Wieder WR, Cleveland CC, Townsend AR. 2011. Throughfall exclusion and leaf litter addition drive higher rates of soil nitrous oxide emissions from a lowland wet tropical forest. Glob Change Biol 17:3195–207.

    Article  Google Scholar 

  • Zhao M, Running SW. 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–3.

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Xia B, Treves DS, Wu L-Y, Marsh TL, O’Neill RV, Palumbo AV, Tiedje JM. 2002. Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68:326–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank W. Combronero-Castro, W. Wieder, and P. Taylor for assistance with field work, F. Campos Rivera, the Organización para Estudios Tropicales (OET) and the Ministerio de Ambiente y Energia (MINAE) for assisting with research permits and providing logistical support in Costa Rica. We would also like to thank Marleny Jimenez and the Drake Bay Wilderness Camp for their generous access to field sites. We are very grateful for advice from N. Fierer and S. Reed and laboratory assistance and advice provided by Gaddy Bergmann, J. Aylward, S. Castle, T. Dietzler, A. Keller, M. Keville, S. Reed, and S. Weintraub. A National Science Foundation (DEB-0852916) grant to C.C., D.N. and A.T. and an A.W. Mellon Foundation grant to C.C. supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory C. Cleveland.

Additional information

Author contributions

JL, DN, AT, and CC conceived of or designed the study, JL, SG, SO, and KW performed research and analyzed data, and JL, AT, and CC took the lead on writing the manuscript with feedback from all other authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leff, J.W., Nemergut, D.R., Grandy, A.S. et al. The Effects of Soil Bacterial Community Structure on Decomposition in a Tropical Rain Forest. Ecosystems 15, 284–298 (2012). https://doi.org/10.1007/s10021-011-9510-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-011-9510-2

Keywords

Navigation