Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 113))

Abstract

Biodiversity has become a major theme in ecological research and environmental policy (Schulze and Mooney 1993). This concern has arisen because people value diversity both for its own sake and because diversity may control important ecosystem services (food, fiber, animal production, tourism). While the first rationale for concern over biodiversity should apply to microbes, they lack charisma. I therefore doubt that arguments about microbial biodiversity for its own sake will carry much weight for most people, and our concerns with the issue will rest primarily on the implications of their diversity for ecosystem function. While several papers have discussed the effect of functional diversity on ecosystem processes (Meyer 1993; Beare et al. 1994), they basically conclude that microbes carry out many processes that are important to ecosystem function and that their interactions are complex. Formulating meaningful conclusions about the importance of diversity within functional groups, however, has been difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuzinadah RA, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol 103:481–493

    Article  CAS  Google Scholar 

  • Alexander M (1985) Ecological constraints on nitrogen fixation in agricultural ecosystems. Adv Microb Ecol 8: 163–183

    CAS  Google Scholar 

  • Allen MF (1992) Mycorrhizal functioning. Chapman and Hall, New York

    Google Scholar 

  • Allen EB, Allen MF (1984) Competition between plants of different successional stages: mycorrhizae as regulators. Can J Bot 62: 2625–2629

    Article  Google Scholar 

  • Atlas RM (1984) Use of microbial diversity measurements to assess environmental stress. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington DC, pp 540–545

    Google Scholar 

  • Azcón-Aguilar C, Barea JM (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, pp 163–198

    Google Scholar 

  • Beare MH, Coleman DC, Crossley DA Jr, Hendrix PF, Odum EP (1994) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant and Soil (in press)

    Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57: 293–319

    CAS  Google Scholar 

  • Blum U, Shafer SR (1988) Microbial populations and phenolic acids in soil. Soil Biol Biochem 20: 793–800

    Article  CAS  Google Scholar 

  • Bock E, Koops H-P, Ahlers B, Harms H (1992) Oxidation of inorganic nitrogen compounds as energy source. In: Ballows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes 2nd edn. Springer, Berlin, Heidelberg New York, pp 414–430

    Google Scholar 

  • Brookes PC, Heijnen CE, Vance ED (1986) Soil microbial biomass estimates in soils contaminated with metals. Soil Biol Biochem 18: 383–388

    Article  CAS  Google Scholar 

  • Burdon JJ (1993) The role of parasites in plant populations and communities. In: Schultze E-D, Mooney HA (eds) Biodiversity and ecosystem function; Ecological Studies 99, Springer, Berlin, Heidelberg New York, pp 165–179

    Google Scholar 

  • Chapin FS III, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361: 150–153

    Article  CAS  Google Scholar 

  • Clein JS, Schimel JP (1994) Reduction in microbial activity in birch litter due to drying and rewetting events. Soil Biol Biochem (in press) 26: 403–406

    Article  Google Scholar 

  • DeLuca TH, Keeney DR, McCarty GW (1992) Effect of freeze-thaw events on mineralization of soil nitrogen. Biol Fertil Soils 14: 116–120

    Article  CAS  Google Scholar 

  • Dighton J, Mason PA (1985) Mycorrhizal dynamics during forest tree development. In: Moore D, Casselton LA, Wood DA, Frankland JC (eds) Developmentalbiology of higher fungi. Cambridge University Press, Cambridge, pp 117–139

    Google Scholar 

  • Dighton J, Thomas ED, Latter PM (1987) Interactions between tree roots, mycorrhizas, a saprotrophic fungus and the decomposition of organic substrates in a microcosm. Biol Fertil Soils 4: 145–150

    Article  Google Scholar 

  • Domsch KH (1984) Effects of pesticides and heavy metals on biological processes in soil. Plant Soil 76: 367–378

    Article  CAS  Google Scholar 

  • Entry JA, Rose CL, Cromack K (1991) Litter decomposition and nutrient release in ectomycorrhizal mat soils of a Douglas fir ecosystem. Soil Biol Biochem 23: 285–290

    Article  CAS  Google Scholar 

  • Finlay RD, Frostergard A, Sonnerfeldt A-M (1992) Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud. New Phytol 120: 105–115

    Article  Google Scholar 

  • Firestone MK, Davidson EA (1989) Microbiological basis of NO and N2O production and consumption in soil. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, New York, pp 7–21

    Google Scholar 

  • Fitter AH, Saunders IR (1992) Interactions with the soil fauna. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, pp 333–354

    Google Scholar 

  • Gadgil RL, Gadgil PD (1975) Suppression of htter decomposition by mycorrhizal roots of Pinus radiata. NZJ For Sci 5: 33–41

    Google Scholar 

  • Gersper PL, Alexander V, Barkley SA, Barsdate RJ, Flint PS (1980) The soils and their nutrients. In: Brown J, Miller PC, Tieszen LL, Bunnell FL (eds) An Arctic ecosystem. Dowden, Hutchinson & Ross, Stroudsburg, pp 219–254

    Google Scholar 

  • Gold MH, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporum. Microbiol Rev 57: 605–622

    CAS  Google Scholar 

  • Grant RF, Juma NG, Mill WB (1993) Simulation of carbon and nitrogen transformations in soil: mineralization. Soil Biol Biochem 25: 1317–1329

    Article  CAS  Google Scholar 

  • Griffiths RP, Caldwell BA, Cromack K, Morita RY (1990) Douglas-fir forest soils colonized by ectomycorrhizal mats. I. Seasonal variation in nitrogen chemistry and nitrogen cycle transformation rates. Can J For Res 20: 211–218

    Article  Google Scholar 

  • Halvorson JJ, Smith JL, Franz EH (1991) Lupine influence on soil carbon, nitrogen and microbial activity in developing ecosystems at Mount St. Helens. Oecologia 87: 162–170

    Article  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London Harris RF (1981) Effect of water potential on microbial growth and activity. In: Parr JF, Gardner WR, Elliott LF (eds) Water potential relations in soil microbiology. American Society of Agronomy, Madison, pp 23–95

    Google Scholar 

  • Haselwandter K, Bobleter O, Read DJ (1990) Degradation of 14C-labeled hgnin and dehydropolymer of coniferyl alcohol by cricoid and ectomycorrhizal fungi. Arch Microbiol 153: 352–354

    Article  CAS  Google Scholar 

  • Ho I (1987) Comparison of eight Pisolithus tinctorius isolates for growth rate, enzyme activity, and phytohormone production. Can J For Res 17: 31–35

    Article  CAS  Google Scholar 

  • Ho I, Zak B (1979) Acid phosphatase activity of six ectomycorrhizal fungi. Can J Bot 57: 1203–1205

    Article  CAS  Google Scholar 

  • Hunt HW, Ingham ER, Coleman DC, Elhott ET, Reid CPP (1988) Nitrogen limitation of production and decomposition in prairie, mountain meadow, and pine forest. Ecology 69: 1009–1016

    Article  Google Scholar 

  • Ingham ER, Coleman DC, Moore JC (1989) An analysis of food-web structure and function in a shortgrass prairie, a mountain meadow, and a lodgepole pine forest. Biol Fertil Soils 8:29–37

    Article  Google Scholar 

  • Jones WJ (1991) Diversity and physiology of methanogens. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. American Society for Microbiology, Washington, DC, pp 39–55

    Google Scholar 

  • Kaal EEJ, de Jong E, Field JA (1993) Stimulation of hgnolytic peroxidase activity by nitrogen nutrients in the white rot fungus Bjerkandera sp. strain BOS55. Appl Environ Microbiol 59: 4031–4036

    CAS  Google Scholar 

  • Kieft TL, Soroker E, Firestone MK (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19: 119–126

    Article  Google Scholar 

  • Lawrey JD (1989) Lichen secondary compounds: evidence for a correspondence between antiherbivore and antimicrobial function. Bryologist 92: 326–328

    Article  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54: 305–315

    CAS  Google Scholar 

  • Lidstrom ME (1992) The aerobic methylotrophic bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn Springer, Berlin Heidelberg, New York

    Google Scholar 

  • Ljungdahl LG, Eriksson K-E (1985) Ecology of microbial cellulose degradation. Adv Microb Ecol 8: 237–299

    CAS  Google Scholar 

  • Mlaugherty CA, Pastor J, Aber JD, Mehllo JM (1985) Forest htter decomposition in relation to soil nitrogen dynamics and Htter quality. Ecology 66: 266–275

    Article  Google Scholar 

  • Meyer O (1993) Functional groups of microorganisms. In: Schultze E-D, Mooney HA (eds) Biodiversity and ecosystem function. Ecological Studies 99. Springer, Berlin Heidelberg, New York, pp 67–96

    Google Scholar 

  • Miller SL, Allen EB (1992) Mycorrhizae, nutrient translocation, and interactions between plants. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, pp 301–332

    Google Scholar 

  • Mohna R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Nihlgärd B (1985) The ammonium hypothesis-an additional explanation to the forest dieback in Europe. Ambio 14: 2–8

    Google Scholar 

  • Périé FI, Gold MH (1991) Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl Environ Microbiol 57: 2240–2245

    Google Scholar 

  • Perry DA, Margolis H, Choquene C, Molina R, Trappe JM (1989) Ectomycorrhizal mediation of competition between coniferous tree species. New Phytol 112: 501–511

    Article  Google Scholar 

  • Rastetter EB, McKane RB, Shaver GR, Melillo JM (1992) Changes in C storage by terrestrial ecosystems: how C-N interactions restrict responses to CO2 and temperature. Water Air Soil Pollot 64: 327–344

    Article  CAS  Google Scholar 

  • Read DJ (1992) The mycorrhizal mycelium. In: Allen MF (ed) Mycorrhiza functioning. Chapman and Hall, New York, pp 102–133

    Google Scholar 

  • Read DJ (1993) Plant-microbe mutuahsms and community structure. In: Schultze E-D, Mooney HA (eds) Biodiversity and ecosystem/Function, Springer, Berlin Heidelberg, New York, pp. 181–209

    Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, New York

    Google Scholar 

  • Salonius PO (1981) Metabolic capabilities of forest soil microbial populations with reduced species diversity. Soil Biol Biochem 13: 1–10

    Article  Google Scholar 

  • Schimel JP, Firestone MK (1989) Inorganic nitrogen incorporation by coniferous forest floor material. Soil Biol Biochem 21: 41–46

    Article  Google Scholar 

  • Schimel JP, Scott W, Killham K (1989) Changes in cytoplasmic carbon and nitrogen pools in a soil bacterium and a fungus in response to salt stress. Appl Environ Microbiol 55:1635–1637

    CAS  Google Scholar 

  • Schimel JP, Kielland K, Chapin FS III (1994) Nutrient availabihty and uptake by tundra plants. In: Reynolds JF, Tenhunen JD (eds) Landscape function implication for ecosystem response to disturbance; a case study in arctic tundra. Springer, Berlin Heidelberg, New York, (in press)

    Google Scholar 

  • Schulze E-D, Mooney HA (1993) Biodiversity and ecosystem function. Ecological Studies 99. Springer Berlin Heidelberg, New York

    Google Scholar 

  • Schuster M, Conrad R (1992) Metabohsm of nitric oxide and nitrous oxide during nitrification and denitrification in soil at difl’erent incubation conditions. FEMS Microbiol Ecol 101: 133–143

    CAS  Google Scholar 

  • Skogland T, Lomeland S, Goksoyr J (1988) Respiratory burst after freezing and thawing of soil: experiments with soil bacteria. Soil Biol Biochem 20: 851–866

    Article  Google Scholar 

  • Skopp J, Jawson MD, Doran JW (1990) Steady-state aerobic microbial activity as a function of soil water content. Soil Sci Soc Am J 54: 1619–1625

    Article  Google Scholar 

  • Song H-G, Bartha R (1990) Effects of jet fuel spills on the microbial community of soil. Appl Environ Microbiol 56: 646–651

    CAS  Google Scholar 

  • Stephenson SL (1986) Changes in a former chestnut-dominated forest after a half century of succession. Am Midi Nat 116: 173–179

    Article  Google Scholar 

  • Sugai SF, Schimel JP (1993) Decomposition and biomass incorporation of 14C-labeled glucose and phenolics in taiga forest floor: effect of substrate quahty, successional state, and season. Soil Biol Biochem 25: 1379–1389

    Article  CAS  Google Scholar 

  • Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder JB (ed) Biology of anaerobic microorganisms. John Wiley, New York, pp 179–244

    Google Scholar 

  • Trappe JM, Maser C (1977) Ectomycorrhizal fungi: interactions of mushrooms and truffles with beasts and trees. In: Walters T (ed) Mushrooms and man, an interdisciphnary approach to mycology. Linn-Benton Community College, Albany, OR, pp 165–179

    Google Scholar 

  • Valentine DW, Holland EA, Schimel DS (1994), Ecological controls over methane and carbon dioxide ffuxes along a successional gradient. J Geophys Res 99: 1563–1571

    Article  CAS  Google Scholar 

  • Van Gestel M, Ladd JN, Amato M (1991) Carbon and nitrogen mineralization from two soils of contrasting texture and microaggregate stability: inffuence of sequential fumigation, drying and storage. Soil Biol Biochem 23: 313–322

    Article  Google Scholar 

  • Van Veen JA, Ladd JN, Frissel MJ (1984) Modeling C and N turnover through the microbial biomass in soil. Plant Soil 76: 257–274

    Google Scholar 

  • Visser S, Parkinson D (1989) Microbial respiration and biomass in soil of a lodgepole pine stand acidified with elemental sulfur. Can J For Res 19: 955–961

    Article  CAS  Google Scholar 

  • White CS (1986) Volatile and water-soluble inhibitors of nitrogen mineralization and nitrification in a ponderosa pine ecosystem. Biol Fértil Soils 2: 97–104

    Google Scholar 

  • Zumft WG (1992) The denitrifying prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer, Berlin Heidelberg, New York, pp 554–582

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schimel, J. (1995). Ecosystem Consequences of Microbial Diversity and Community Structure. In: Chapin, F.S., Körner, C. (eds) Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences. Ecological Studies, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78966-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78966-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78968-7

  • Online ISBN: 978-3-642-78966-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics