Skip to main content

Advertisement

Log in

Difference in soil bacterial community composition depends on forest type rather than nitrogen and phosphorus additions in tropical montane rainforests

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Rapid increase of nitrogen (N) deposition could alter nutrient availability, leading to changes in soil microbial processes and ecosystem carbon and nutrient cycling. However, the effects of N deposition on soil microbes remain elusive in the tropical rainforests in Asia. Here, we conducted a 3-year N addition experiment with four treatments (0, 20, 50, and 100 kg N ha−1 year−1) in a primary and secondary tropical montane forest in Hainan Island, China, to explore the effects of elevated N availability on soil microbial community composition. We also conducted a phosphorus (P) treatment (50 kg P ha−1 year−1) and a N + P treatment (50 kg N ha−1 year−1 + 50 kg P ha−1 year−1) to examine potential P limitation driven by N deposition in highly weathered tropical soils, using a bar-coded pyrosequencing technique. The composition of soil bacterial communities differed dramatically between the primary and secondary forests, but not significant dissimilarity among the fertilization treatments. The community composition, phylogenetic diversity and phylotype richness were significantly correlated with soil pH, total organic C (TOC), and total N (TN), respectively. There were significant differences between the primary and secondary forest in pH, TOC, and TN, but not among the fertilization treatments. These results suggest that differences in soil nutrient status between the primary and secondary forests due to different successional stages rather than chronic N fertilization may be the major factor affecting soil bacterial composition in the tropical montane rainforests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bai ZZ, Yang G, Chen H, Zhu Q, Chen DX, Li YD, Wang X, Wu ZM, Zhou GY, Peng CH (2014) Nitrous oxide fluxes from three forest types of the tropical mountain rainforests on Hainan Island, China. Atmos Environ 92:469–477

    Article  CAS  Google Scholar 

  • Boot CM, Hall EK, Denef K, Baron JS (2016) Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpine forest ecosystem. Soil Biol Biochem 92:211–220

    Article  CAS  Google Scholar 

  • Camenzind T, Hempel S, Homeier J, Horn S, Velescu A, Wilcke W, Rillig MC (2014) Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Glob Chang Biol 20:3646–3659

    Article  PubMed  Google Scholar 

  • Camenzind T, Homeier J, Dietrich K, Hempel S, Hertel D, Krohn A, Leuschner C, Oelmann Y, Olsson PA, Suárez JP, Rillig MC (2016) Opposing effects of nitrogen versus phosphorus additions on mycorrhizal fungal abundance along an elevational gradient in tropical montane forests. Soil Biol Biochem 94:37–47

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LY, Li P, Yang YH (2016a) Dynamic patterns of nitrogen: phosphorus ratios in forest soils of China under changing environment. J Geophys Res-Biogeo 121:2410–2421

    Article  CAS  Google Scholar 

  • Chen YL, Ding JZ, Peng YF, Li F, Yang GB, Liu L, Qin SQ, Fang K, Yang YH (2016b) Patterns and drivers of soil microbial communities in Tibetan alpine and global terrestrial ecosystems. J Biogeogr 43:2027–2039

    Article  Google Scholar 

  • Chu HY, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12:2998–3006

    Article  CAS  PubMed  Google Scholar 

  • Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a ‘Redfield ratio’ for the microbial biomass? Biogeochemistry 85:235–252

    Article  Google Scholar 

  • Contosta AR, Frey SD, Cooper AB (2015) Soil microbial communities vary as much over time as with chronic warming and nitrogen additions. Soil Biol Biochem 88:19–24

    Article  CAS  Google Scholar 

  • Cusack DF, Silver WL, Torn MS, Burton SD, Firestone MK (2011) Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology 92:621–632

    Article  PubMed  Google Scholar 

  • Don A, Böhme IH, Dohrmann AB, Poeplau C, Tebbe CC (2017) Microbial community composition affects soil organic carbon turnover in mineral soils. Biol Fertil Soils 53:445–456

    Article  CAS  Google Scholar 

  • Du E, Zhou Z, Li P, Hu X, Ma Y, Wang W, Zheng C, Zhu J, He JS, Fang J (2013) NEECF: a project of nutrient enrichment experiments in China’s forests. J Plant Ecol 6:428–435

    Article  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  • Fang JY, Li YD, Zhu B, Liu GH, Zhou GY (2004) Community structures and species richness in the montane rain forest of Jianfengling, Hainan Island, China. Biodivers Sci 12:29–43

    Google Scholar 

  • Fanin N, Hattenschwiler S, Schimann H, Fromin N (2015) Interactive effects of C, N and P fertilization on soil microbial community structure and function in an Amazonian rain forest. Funct Ecol 29:140–150

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galloway JN, Winiwarter W, Leip A, Leach AM, Bleeker A, Erisman JW (2014) Nitrogen footprints: past, present and future. Environ Res Lett 9:115003

    Article  Google Scholar 

  • Jiang L, Tian D, Ma SH, Zhou XL, Xu LC, Zhu JX, Jing X, Zheng CY, Shen HH, Zhou Z, Li YD, Zhu B, Fang JY (2017) The response of tree growth to nitrogen and phosphorus additions in a tropical montane rainforest. Sci Total Environ 618:1064–1070

    Article  CAS  PubMed  Google Scholar 

  • Jing X, Chen X, Tang M, Ding ZJ, Jiang L, Li P, Ma SH, Tian D, Xu LC, Zhu JX, Ji CJ, Shen HH, Zheng CY, Fang JY, Zhu B (2017) Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests. Sci Total Environ 607–608:806–815

    Article  CAS  PubMed  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Li WZ, Godzik A (2006) Cd-hit, a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

  • Li P, Yang YH, Han WX, Fang JY (2014) Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems. Glob Ecol Biogeogr 23:979–987

    Article  Google Scholar 

  • Li J, Li ZA, Wang FM, Zou B, Chen Y, Zhao J, Mo QF, Li YW, Li XB, Xia HP (2015) Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China. Biol Fert Soils 51:207–215

    Article  CAS  Google Scholar 

  • Liu LL, Greaver TL (2010) A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol Lett 13:819–828

    Article  PubMed  Google Scholar 

  • Liu L, Gundersen P, Zhang T, Mo JM (2012) Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biol Biochem 44:31–38

    Article  CAS  Google Scholar 

  • Liu L, Zhang T, Gilliam FS, Gundersen P, Zhang W, Chen H, Mo JM (2013a) Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest. PLoS One 8:e61188. https://doi.org/10.1371/journal.pone.0061188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XJ, Zhang Y, Han WX, Tang A, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013b) Enhanced nitrogen deposition over China. Nature 494:459–462

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Gundersen P, Zhang W, Zhang T, Chen H, Mo JM (2015) Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests. Sci Rep 5:14378. https://doi.org/10.1038/srep14378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu XK, Mao QG, Gilliam FS, Luo YQ, Mo JM (2014) Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob Chang Biol 20:3790–3801

    Article  PubMed  Google Scholar 

  • Lucas RW, Klaminder J, Futter MN, Bishop KH, Egnell G, Laudon H, Hogberg P (2011) A meta-analysis of the effects of nitrogen additions on base cations: implications for plants, soils, and streams. Forest Ecol Manag 262:95–104

    Article  Google Scholar 

  • Luyssaert S, Schulze ED, Borner A, Knohl A, Hessenmoller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:213–215

    Article  CAS  PubMed  Google Scholar 

  • Marklein AR, Houlton BZ (2012) Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol 193:696–704

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL (ed) Methods of soil analysis. American Society of Agronomy, Madison, WI, pp 539–579

    Google Scholar 

  • Ngo KM, Turner BL, Muller-Landau HC, Davies SJ, Larjavaara M, Hassan NFN, Lum S (2013) Carbon stocks in primary and secondary tropical forests in Singapore. Forest Ecol Manag 296:81–89

    Article  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA circular 939. U.S. Govt. Printing Office, Washington, DC

    Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Daniel H (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2015) R, a language and environment for statistical computing. Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nat Geosci 1:430–437

    Article  CAS  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. PNAS 101:11001–11006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schöler A, Jacquiod S, Vestergaard G, Schulz S, Schloter M (2017) Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biol Fertil Soils 53:485–489

    Article  CAS  Google Scholar 

  • Shen C, Xiong J, Zhang H, Feng Y, Lin X, Li X, Liang W, Chu H (2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol Biochem 57:204–211

    Article  CAS  Google Scholar 

  • Shen C, Ni Y, Liang W, Wang J, Chu H (2015) Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Front Microbiol 6:582. https://doi.org/10.3389/fmicb.2015.00582

  • Shen C, Ge Y, Yang T, Chu HY (2017) Verrucomicrobial elevational distribution was strongly influenced by soil pH and carbon/nitrogen ratio. J Soils Sediments 17:2449–2456

    Article  CAS  Google Scholar 

  • Sommers LE, Nelson DW (1972) Determination of total phosphorus in soils: a rapid perchloric acid digestion procedure. Soil Sci Soc Am J 36:902–904

    Article  CAS  Google Scholar 

  • Stempfhuber B, Richter-Heitmann T, Bienek L, Schöning I, Schrumpf M, Friedrich M, Schulz S, Schloter M (2017) Soil pH and plant diversity drive co-occurrence patterns of ammonia and nitrite oxidizer in soils from forest ecosystems. Biol Fertil Soils 53:691–700

    Article  CAS  Google Scholar 

  • Strickland MS, Lauber C, Fierer N, Bradford MA (2009) Testing the functional significance of microbial community composition. Ecology 90:441–451

    Article  PubMed  Google Scholar 

  • Terrer C, Vicca S, Stocker BD, Hungate BA, Phillips RP, Reich PB, Finzi AC, Prentice IC (2018) Ecosystem responses to elevated CO2 governed by plant–soil interactions and the cost of nitrogen acquisition. New Phytol 217:507–522

    Article  CAS  PubMed  Google Scholar 

  • Tian D, Li P, Fang WJ, Xu J, Luo YK, Yan ZB, Zhu B, Wang JJ, Xu XN, Fang JY (2017) Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China. Biogeosciences 14:3461–3469

    Article  CAS  Google Scholar 

  • Turner BL, Wright SJ (2014) The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. Biogeochemistry 117:115–130

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Bardgett RD, Straalen NMV (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Vestergaard G, Schulz S, Schöler A, Schloter M (2017) Making big data smart—how to use metagenomics to understand soil quality. Biol Fert Soils 53:479–484

    Article  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20:5–15

    Article  PubMed  Google Scholar 

  • Weintraub SR, Wieder WR, Cleveland CC, Townsend AR (2013) Organic matter inputs shift soil enzyme activity and allocation patterns in a wet tropical forest. Biogeochemistry 114:313–326

    Article  CAS  Google Scholar 

  • Wright SJ (2005) Tropical forests in a changing environment. Trends Ecol Evol 20:553–560

    Article  PubMed  Google Scholar 

  • Xiong J, Liu Y, Lin X, Zhang H, Zeng J, Hou J, Yang Y, Yao T, Knight R, Chu H (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol 14:2457–2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Li P, Ding J, Zhao X, Ma W, Ji C, Fang J (2014) Increased topsoil carbon stock across China’s forests. Glob Chang Biol 20:2687–2696

    Article  PubMed  Google Scholar 

  • Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2 fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol 147:201–222

    Article  CAS  Google Scholar 

  • Zeng J, Liu XJ, Song L, Lin XG, Zhang HY, Shen CC, Chu HY (2016) Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol Biochem 92:41–49

    Article  CAS  Google Scholar 

  • Zhou Z, Jiang L, Du EZ, Hu HF, Li YD, Chen DX, Fang JY (2013) Temperature and substrate availability regulate soil respiration in the tropical mountain rainforests, Hainan Island, China. J Plant Ecol 6:325–334

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Haiyan Chu for kindly allowing us to use the lab equipment, Dr. Yu Shi and Mr. Huaibo Sun for kindly providing us with experimental guidance. Thanks are also due to Dr. Xiaoting Xu and Dr. Haihua Shen for the assistance of sampling and analysis. We thank Alex Boon, PhD, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding

This study was financially supported by National Key Research and Development Program (2017YFC0503900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pin Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 364 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Shen, C., Jiang, L. et al. Difference in soil bacterial community composition depends on forest type rather than nitrogen and phosphorus additions in tropical montane rainforests. Biol Fertil Soils 55, 313–323 (2019). https://doi.org/10.1007/s00374-019-01349-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-019-01349-8

Keywords

Navigation