Skip to main content
Log in

Landscape and Ecosystem-Level Controls on Net Carbon Dioxide Exchange along a Natural Moisture Gradient in Canadian Low Arctic Tundra

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Our understanding of the controls and magnitudes of regional CO2 exchanges in the Arctic are limited by uncertainties due to spatial heterogeneity in vegetation across the landscape and temporal variation in environmental conditions through the seasons. We measured daytime net ecosystem CO2 exchange and each of its component fluxes in the three major tundra ecosystem-types that typically occur along natural moisture gradients in the Canadian Low Arctic biweekly during the full snow-free season of 2004. In addition, we used a plant-removal treatment to compare the contribution of bulk soil organic matter to total respiratory CO2 loss among these ecosystems. Net CO2 exchange rates varied strongly, but not consistently, among ecosystems in the spring and summer phases as a result of ecosystem-specific and differing responses of gross photosynthesis and respiration to temporal variation in environmental conditions. Overall, net carbon gain was largest in the wet sedge ecosystem and smallest in the dry heath. Our measures of CO2 flux variation within each ecosystem were frequently most closely correlated with air or soil temperatures during each seasonal phase. Nevertheless, a particularly large rainfall event in early August rapidly decreased respiration rates and stimulated gross photosynthetic rates, resulting in peak rates of net carbon gain in all ecosystems. Finally, the bulk soil carbon contribution to total respiration was relatively high in the birch hummock ecosystem. Together, these results demonstrate that the relative influences of moisture and temperature as primary controls on daytime net ecosystem CO2 exchange and its component fluxes differ in fundamental ways between the landscape and ecosystem scales. Furthermore, they strongly suggest that carbon cycling responses to environmental change are likely to be highly ecosystem-specific, and thus to vary substantially across the low arctic landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • ACIA. 2005. Arctic climate impact assessment. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bliss LC, Matveyeva NV. 1992. Circumpolar arctic vegetation. In: Chapin FS III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J, Eds. Arctic ecosystems in a changing climate: an ecophysiological perspective. San Diego: Academic Press. pp 59–89.

    Google Scholar 

  • Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP. 1998. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–2.

    Article  CAS  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS. 1985. Chloroform fumigation and the release of soil-nitrogen – a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–42.

    Article  CAS  Google Scholar 

  • Callaghan TV, Jonasson S. 1995. Arctic terrestrial ecosystems and environmental-change. Philos Transact A Math Phys Eng Sci 352:259–76.

    Article  Google Scholar 

  • Chapin FS III, Matson PA, Mooney HA. 2002. Principles of terrestrial ecosystem ecology. New York: Springer.

    Google Scholar 

  • Chapin FS III, McGuire AD, Randerson J, Pielke R, Baldocchi D, Hobbie SE, Roulet N, Eugster W, Kasischke E, Rastetter EB, Zimov SA, Running SW. 2000. Arctic and boreal ecosystems of western North America as components of the climate system. Glob Change Biol 6:211–23.

    Article  Google Scholar 

  • Chapin FS III, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping CL, Tape KD, Thompson CDC, Walker DA, Welker JM. 2005. Role of land-surface changes in Arctic summer warming. Science 310:657–60.

    Article  PubMed  CAS  Google Scholar 

  • Churkina G, Running SW. 1998. Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems 1:206–15.

    Article  Google Scholar 

  • Flanagan PW, Bunnell FL 1980. Microflora activities and decomposition. In: Brown J, Miller PC, Tieszen LL, Bunnell FL, Eds. An arctic ecosystem: the coastal tundra at Barrow, Alaska. Stroudsburg: Dowden, Hutchinson, and Ross. pp 291–334.

    Google Scholar 

  • Fuchs M, Hadas A. 1972. The heat flux density in a non-homogeneous bare loessial soil. Bound Layer Meteorol 3:191–200.

    Article  Google Scholar 

  • Giblin AE, Nadelhoffer KJ, Shaver GR, Laundre JA, McKerrow AJ. 1991. Biogeochemical diversity along a riverside toposequence in Arctic Alaska. Ecol Monogr 61:415–35.

    Article  Google Scholar 

  • Grogan P, Chapin FS III. 2000. Initial effects of experimental warming on above- and belowground components of net ecosystem CO2 exchange in arctic tundra. Oecologia 125:512–20.

    Article  Google Scholar 

  • Grogan P, Jonasson S. 2003. Controls on annual nitrogen cycling in the understorey of a sub-arctic birch forest. Ecology 84:202–18.

    Article  Google Scholar 

  • Grogan P, Jonasson S. 2005. Temperature and substrate controls on intra-annual variation in ecosystem respiration in two subarctic vegetation types. Glob Change Biol 11:465–75.

    Article  Google Scholar 

  • Grogan P, Jonasson S. 2006. Ecosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation type. Glob Change Biol 12:1479–95.

    Article  Google Scholar 

  • Heal OW, Flanagan PW, French DD, Maclean SF Jr. 1981. Decomposition and accumulation of organic matter in tundra. In: Bliss LC, Heal OW, Moore JJ, Eds. Tundra ecosystems: a comparitive analysis. Cambridge: Cambridge University Press. pp 587–633.

    Google Scholar 

  • Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB, Fastie CL, Griffith B, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker JM, Winker K, Yoshikawa K. 2005. Evidence and implications of recent climate change in northern Alaska and other arctic regions. Clim Change 72:251–98.

    Article  Google Scholar 

  • Hobbie SE. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–22.

    Article  Google Scholar 

  • Hobbie SE, Chapin FS. 1998. Response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology 79:1526–44.

    Google Scholar 

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JR. 2000. Controls over carbon storage and turnover in high-latitude soils. Glob Change Biol 6:196–210.

    Article  Google Scholar 

  • Illeris L, Konig SM, Grogan P, Jonasson S, Michelsen A, Ro-Poulsen H. 2004. Growing-season carbon dioxide flux in a dry subarctic heath: responses to long-term manipulations. Arct Antarct Alp Res 36:456–63.

    Article  Google Scholar 

  • Jenny H. 1994. Factors of soil formation: a system of quantitative pedology, 2nd edn. New York: Dover.

    Google Scholar 

  • Johnson LC, Shaver GR, Cades DH, Rastetter E, Nadelhoffer K, Giblin A, Laundre J, Stanley A. 2000. Plant carbon-nutrient interactions control CO2 exchange in Alaskan wet sedge tundra ecosystems. Ecology 81:453–69.

    Google Scholar 

  • Johnson LC, Shaver GR, Giblin AE, Nadelhoffer KJ, Rastetter ER, Laundre JA, Murray GL. 1996. Effects of drainage and temperature on carbon balance of tussock tundra microcosms. Oecologia 108:737–48.

    Article  Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK, Nielsen EB, Callaghan TV. 1996. Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: implications for plant nutrient uptake. Oecologia 106:507–15.

    Article  Google Scholar 

  • Jones MH, Fahnestock JT, Walker DA, Walker MD, Welker JM. 1998. Carbon dioxide fluxes in moist and dry arctic tundra during season: responses to increases in summer temperature and winter snow accumulation. Arct Alp Res 30:373–80.

    Article  Google Scholar 

  • Kane DL, Hinkel KM, Goering DJ, Hinzman LD, Outcalt SI. 2001. Non-conductive heat transfer associated with frozen soils. Glob Planet Change 29:275–92.

    Article  Google Scholar 

  • Lafleur PM, Humphreys ER. (2008). Spring warming and carbon dioxide exchange over low arctic tundra in central Canada. Glob Change Biol 14:1–17.

    Article  Google Scholar 

  • Lashof DA, DeAngelo BJ, Saleska SR, Harte J. 1997. Terrestrial ecosystem feedbacks to global climate change. Annu Rev Energy Environ 22:75–118.

    Article  Google Scholar 

  • Livingston GP, Hutchinson GL, Spartalian K. 2006. Trace gas emission in chambers: a non-steady-state diffusion model. Soil Sci Soc Am J 70:1459–69.

    Article  CAS  Google Scholar 

  • McFadden JP, Eugster W, Chapin FS. 2003. A regional study of the controls on water vapor and CO2 exchange in arctic tundra. Ecology 84:2762–76.

    Article  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA. 1991. Effects of temperature and substrate quality on element mineralization in 6 Arctic soils. Ecology 72:242–53.

    Article  Google Scholar 

  • Neff JC, Hooper DU. 2002. Vegetation and climate controls on potential CO2 , DOC and DON production in northern latitude soils. Glob Change Biol 8:872–84.

    Article  Google Scholar 

  • Nobrega S, Grogan P. 2007. Deeper snow enhances winter respiration from both plant-associated and bulk soil carbon pools in birch hummock tundra. Ecosystems 10:419–31.

    Article  CAS  Google Scholar 

  • Oberbauer SF, Cheng WX, Gillespie CT, Ostendorf B, Sala A, Gebauer R, Virginia RA, Tenhunen JD. 1996. Landscape patterns of carbon dioxide exchange in Tundra ecosystems. In: Reynolds JF, Tenhunen JD, Eds. Ecological studies 120. Berlin: Springer-Verlag. pp 223–56.

    Google Scholar 

  • Oberbauer SF, Tweedie CE, Welker JM, Fahnestock JT, Henry GHR, Webber PJ, Hollister RD, Walker MD, Kuchy A, Elmore E, Starr G. 2007. Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecol Monogr 77:221–38.

    Article  Google Scholar 

  • Oechel WC, Vourlitis GL, Verfaillie J, Crawford T, Brooks S, Dumas E, Hope A, Stow D, Boynton B, Nosov V, Zulueta R. 2000. A scaling approach for quantifying the net CO2 flux of the Kuparuk River Basin, Alaska. Glob Change Biol 6:160–73.

    Article  Google Scholar 

  • Ping CL, Michaelson GJ, Kimble JM. 1997. Carbon storage along a latitudinal transect in Alaska. Nutrient Cycling Agroecosyst 49:235–42.

    Article  CAS  Google Scholar 

  • Porsild AE, Cody WJ. 1980. Vascular plants of Continental Northwest Territories, Canada. Ottawa: National Museums of Canada.

    Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG. 1982. Soil carbon pools and world life zones. Nature 298:156–9.

    Article  CAS  Google Scholar 

  • Rampton VN. 2000. Large-scale effects of subglacial meltwater flow in the southern Slave Province, Northwest Territories, Canada. Can J Earth Sci 37:81–93.

    Article  Google Scholar 

  • Semikhatova OA, Gerasimenko TV, Ivanova TI. 1992. Photosynthesis, respiration, and growth of plants in the Soviet Arctic. In: Chapin FS III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J, Eds. Arctic ecosystems in a changing climate: an ecophysiological perspective. San Diego: Academic Press. pp 169–92.

    Google Scholar 

  • Shaver GR, Chapin FS. 1991. Production – biomass relationships and element cycling in contrasting Arctic vegetation types. Ecol Monogr 61:1–31.

    Article  Google Scholar 

  • Shaver GR, Billings WD, Chapin FS III, Giblin AE, Nadelhoffer KJ, Oechel WC, Rastetter EB. 1992. Global change and the carbon balance of Arctic ecosystems. BioScience 42:433–41.

    Article  Google Scholar 

  • Shaver GR, Canadell J, Chapin FS, Gurevitch J, Harte J, Henry G, Ineson P, Jonasson S, Melillo J, Pitelka L, Rustad L. 2000. Global warming and terrestrial ecosystems: a conceptual framework for analysis. BioScience 50:871–82.

    Article  Google Scholar 

  • Shaver GR, Street LE, Rastetter EB, Van Wijk MT, Williams M. 2007. Functional convergence in regulation of net CO2 flux in heterogeneous tundra landscapes in Alaska and Sweden. J Ecol 95:802–17.

    Article  Google Scholar 

  • Sjogersten S, van der Wal R, Woodin SJ. 2006. Small-scale hydrological variation determines landscape CO2 fluxes in the high Arctic. Biogeochemistry 80:205–16.

    Article  Google Scholar 

  • Walker DA. 2000. Hierarchical subdivision of Arctic tundra based on vegetation response to climate, parent material and topography. Glob Change Biol 6:19–34.

    Article  Google Scholar 

  • Warren Wilson J. 1958. Analysis of the spatial distribution of foliage by two-dimensional point quadrats. New Phytol 59:92–101.

    Google Scholar 

  • Weintraub MN, Schimel JP. 2003. Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils. Ecosystems 6:129–43.

    Article  CAS  Google Scholar 

  • Welker JM, Fahnestock JT, Henry GHR, O’Dea KW, Chimner RA. 2004. CO2 exchange in three Canadian High Arctic ecosystems: response to long-term experimental warming. Glob Change Biol 10:1981–95.

    Article  Google Scholar 

  • Williams M, Street LE, van Wijk MT, Shaver GR. 2006. Identifying differences in carbon exchange among arctic ecosystem types. Ecosystems 9:288–304.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mike Treberg, Elyn Humphreys, Joachim Obst and Alison Ronson for help in the field, and Elyn H., Kate Buckeridge and several reviewers including P. Sullivan for many very helpful comments on an earlier version of this article. Many thanks to Peter Lafleur and Greg Henry for scientific support, and especially to Steve Matthews and Karin Clark of the Division of Environment and Natural Resources, G.N.W.T. for logistical assistance. Financed by NSERC, CFCAS, and DIAND.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Grogan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10021_2008_9128_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nobrega, S., Grogan, P. Landscape and Ecosystem-Level Controls on Net Carbon Dioxide Exchange along a Natural Moisture Gradient in Canadian Low Arctic Tundra. Ecosystems 11, 377–396 (2008). https://doi.org/10.1007/s10021-008-9128-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-008-9128-1

Keywords

Navigation