Skip to main content
Log in

Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Photodynamic diagnosis is used during glioma surgery. Although some studies have shown that the spectrum of fluorescence was efficient for precise tumor diagnosis, previous methods to characterize the spectrum have been problematic, which can lead to misdiagnosis. In this paper, we introduce a comparison technique to characterize spectrum from pathology and results of preliminary measurement using human brain tissues. We developed a spectrum scanning system that enables spectra measurement of raw tissues. Because tissue preparations retain the shape of the device holder, spectra can be compared precisely with pathological examination. As a preliminary analysis, we measured 13 sample tissues from five patients with brain tumors. The technique enabled us to measure spectra and compare them with pathological results. Some tissues exhibited a good relationship between spectra and pathological results. Although there were some false positive and false negative cases, false positive tissue had different spectra in which intensity of short-wavelength side was also high. The proposed technique provides an accurate comparison of quantitative fluorescence spectra with pathological results. We found that spectrum analysis may reduce false positive errors. These results will increase the accuracy of tumor tissue identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stummer W, Stepp H, Moller G et al (1998) Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue. Acta Neurochir (Wien) 140(10):995–1000

    Article  CAS  Google Scholar 

  2. Stummer W, Novotny A, Stepp H et al (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93(6):1003–1013

    Article  PubMed  CAS  Google Scholar 

  3. Stummer W, Pichlmeier U, Meinel T et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401

    Article  PubMed  CAS  Google Scholar 

  4. Chung YG, Schwartz JA, Gardner CM et al (1997) Diagnostic potential of laser-induced autofluorescence emission in brain tissue. J Korean Med Sci 12(2):135–142

    PubMed  CAS  Google Scholar 

  5. Dailey HA, Smith A (1984) Differential interaction of porphyrins used in photoradiation therapy with ferrochelatase. Biochem J 223(2):441–445

    PubMed  CAS  Google Scholar 

  6. Ishihara R, Katayama Y, Watanabe T et al (2007) Quantitative spectroscopic analysis of 5-aminolevulinic acid-induced protoporphyrin IX fluorescence intensity in diffusely infiltrating astrocytomas. Neurol Med Chir (Tokyo) 47(2):53–57

    Article  Google Scholar 

  7. Toms SA, Lin WC, Weil RJ et al (2005) Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity. Neurosurgery 57(4 Suppl):382–391

    Article  PubMed  Google Scholar 

  8. Lin WC, Toms SA, Johnson M et al (2001) In vivo brain tumor demarcation using optical spectroscopy. Photochem Photobiol 73(4):396–402

    Article  PubMed  CAS  Google Scholar 

  9. Savitzky A (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639

    Article  CAS  Google Scholar 

  10. Wagnieres G (1998) In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68:603–632

    PubMed  CAS  Google Scholar 

  11. Yin D (1996) Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores. Free Radic Biol Med 21(6):871–888

    Article  PubMed  CAS  Google Scholar 

  12. Eldred GE, Miller GV, Stark WS et al (1982) Lipofuscin: resolution of discrepant fluorescence data. Science 216(4547):757–759

    Article  PubMed  CAS  Google Scholar 

  13. Zijlstra WG, Buursma A, van der Roest WPM (1991) Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin. Clin Chem 37(9):1633–1638

    PubMed  CAS  Google Scholar 

  14. Faber DJ, Mik EG, Aalders MCG et al (2003) Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography. Opt Lett 28(16):1436–1438

    Article  PubMed  CAS  Google Scholar 

  15. Faber DJ, Aalders MCG, Mik EG et al (2004) Oxygen saturation-dependent absorption and scattering of blood. Phys Rev Lett 93(2):028102

    Article  PubMed  CAS  Google Scholar 

  16. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed  Google Scholar 

  17. Utsuki S, Oka H, Sato S et al (2007) Histological examination of false positive tissue resection using 5-aminolevulinic acid-induced fluorescence guidance. Neurol Med Chir (Tokyo) 47(5):210–213

    Article  Google Scholar 

  18. Janzer RC, Raff MC (1987) Astrocytes induce bloodbrain barrier properties in endothelial cells. Nature 325(6101):253–257

    Article  PubMed  CAS  Google Scholar 

  19. Janzer RC (1993) The blood-brain barrier: cellular basis. J Inherit Metab Dis 16(4):639–647

    Article  PubMed  CAS  Google Scholar 

  20. Noguchi M, Aoki E, Yoshida D, Kobayashi E, Omori S, Muragaki Y, Iseki H, Nakamura K, Sakuma I (2006) A novel robotic laser ablation system for precision neurosurgery with intraoperative 5-ALA-induced PpIX fluorescence detection. MICCAI 4190:543–550

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by grant for Translational Systems Biology and Medicine Initiative (TSBMI) and Grant-in-Aid for JSPS Fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiro Ando.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ando, T., Kobayashi, E., Liao, H. et al. Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification. Brain Tumor Pathol 28, 43–51 (2011). https://doi.org/10.1007/s10014-010-0002-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-010-0002-4

Keywords

Navigation