Skip to main content
Log in

The Probabilistic Scaling Paradigm

  • Original Article
  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this note we further discuss the probabilistic scaling introduced by the authors in (arXiv:1910.08492, 2019) and (Invent. Math. 228, 539–686, 2022). In particular we do a case study comparing the stochastic heat equation, the nonlinear wave equation and the nonlinear Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. One may also ask about how their distribution evolve over time; at least how do the ensemble averages evolve. Such questions arise in wave turbulence; see [11, 13, 14, 17,18,19,20] and the references therein.

  2. Heuristically, one can check the following example [46]: \(\dot{x}= \sigma (x)\ \dot{w}\). At least when w is fractional Brownian motion, there is no canonical stochastic definition of iterated integrals below the threshold \(\gamma = \frac{1}{4}\) (say for \(\sigma (x) = x\)), where \(\gamma \) refers the regularity of w (which is of course also the regularity of the solution x). However, the regime \(\gamma >0\) is in principle subcritical in the parabolic setting.

  3. Here and also in the following parts of this paper we write \(C^\gamma \) for the Besov space \(B_{\infty ,\infty }^{\gamma }\).

  4. This square root cancellation is derived from a classic large deviation property for the sum of independent Gaussian variables, as referenced in Lemma 4.4 in [22].

  5. \(k_i \ne k_j\) if the corresponding signs \(\pm _i\) and \(\pm _j\) are the opposite.

  6. For example [36, 41] focus on such discrepancies.

  7. In wave turbulence theory it is customary to perform another reduction so the space scale becomes N and time scale becomes \(N^2\); in this setting the probabilistically critical problem would correspond to \(T_{\text {kin}}=N^2\).

  8. Thus, in particular, proving that with high probability, there is no energy cascade between Fourier modes (i.e. \(|\widehat{u}(t,k)|^2\approx |\widehat{u}(0,k)|^2\) with negligible error for large N).

  9. However, it is compatible with the wave equation due to the finite speed of propagation; specifically, the result of [10] is expected to hold also for the Gibbs measure on \(\mathbb {R}^3\). We refrain from discussing this here, but for more details, refer to [10].

References

  1. Aizenman, M.: Geometric analysis of \(\Phi ^4\) fields and Ising models. Parts I and II. Commun. Math. Phys. 86, 1–48 (1982)

    Article  MathSciNet  Google Scholar 

  2. Aizenman, M., Duminil-Copin, H.: Marginal triviality of the scaling limits of critical 4D Ising and \(\lambda \phi _4^4\) models. Ann. Math. (2) 194, 163–235 (2021)

    Article  MathSciNet  Google Scholar 

  3. Albeverio, S., Kusuoka, S.: The invariant measure and the flow associated to the \(\Phi ^4_3\)-quantum field model. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20, 1359–1427 (2020)

  4. Barashkov, N., Gubinelli, M.: A variational method for \(\Phi _3^4\). Duke Math. J. 169, 3339–3415 (2020)

    Article  MathSciNet  Google Scholar 

  5. Barashkov, N., Gubinelli, M.: The \(\Phi _3^4\) measure via Girsanov’s theorem. Electron. J. Probab. 26, 1–29 (2021)

    Article  Google Scholar 

  6. Bényi, Á., Oh, T., Pocovnicu, O.: On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on \(\mathbb{R} ^d\), \(d\ge 3\). Trans. Amer. Math. Soc. Ser. B 2, 1–50 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bourgain, J.: Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys. 166, 1–26 (1994)

    Article  Google Scholar 

  8. Bourgain, J.: Invariant measures for the \(2D\)-defocusing nonlinear Schrödinger equation. Commun. Math. Phys. 176, 421–445 (1996)

    Article  Google Scholar 

  9. Bourgain, J.: Nonlinear Schrödinger equations. In: Hyperbolic Equations and Frequency Interactions (Park City, UT, 1995). IAS/Park City Math. Ser., vol. 5, pp. 3–157. Amer. Math. Soc., Providence, RI (1999)

  10. Bringmann, B., Deng, Y., Nahmod, A., Yue, H.: Invariant Gibbs measures for the three dimensional cubic nonlinear wave equation. arXiv:2205.03893 (2022)

  11. Buckmaster, T., Germain, P., Hani, Z., Shatah, J.: Onset of the wave turbulence description of the longtime behavior of the nonlinear Schrödinger equation. Invent. Math. 225, 787–855 (2021)

    Article  MathSciNet  Google Scholar 

  12. Catellier, R., Chouk, K.: Paracontrolled distributions and the 3-dimensional stochastic quantization equation. Ann. Probab. 46, 2621–2679 (2018)

    Article  MathSciNet  Google Scholar 

  13. Collot, C., Germain, P.: On the derivation of the homogeneous kinetic wave equation. arXiv:1912.10368 (2019)

  14. Collot, C., Germain, P.: Derivation of the homogeneous kinetic wave equation: longer time scales. arXiv:2007.03508 (2020)

  15. Da Prato, G., Debussche, A.: Strong solutions to the stochastic quantization equations. Ann. Probab. 31, 1900–1916 (2003)

    Article  MathSciNet  Google Scholar 

  16. Dean, K.: Private communication

  17. Deng, Y., Hani, Z.: On the derivation of the wave kinetic equation for NLS. Forum Math. Pi 9, e6 (2021)

    Article  MathSciNet  Google Scholar 

  18. Deng, Y., Hani, Z.: Full derivation of the wave kinetic equation. Invent. Math. 233, 543–724 (2023)

    Article  MathSciNet  Google Scholar 

  19. Deng, Y., Hani, Z.: Propagation of chaos and the higher order statistics in the wave kinetic theory. arXiv:2110.04565 (2021)

  20. Deng, Y., Hani, Z.: Derivation of the wave kinetic equation: full range of scaling laws. arXiv:2301.07063 (2023)

  21. Deng, Y., Nahmod, A., Yue, H.: Invariant Gibbs measures and global strong solutions for nonlinear Schrödinger equations in dimension two. arXiv:1910.08492 (2019)

  22. Deng, Y., Nahmod, A.R., Yue, H.: Random tensors, propagation of randomness, and nonlinear dispersive equations. Invent. Math. 228, 539–686 (2022)

    Article  MathSciNet  Google Scholar 

  23. Deng, Y., Nahmod, A.R., Yue, H.: Invariant Gibbs measure and global strong solutions for the Hartree NLS equation in dimension three. J. Math. Phys. 62, 031514 (2021)

    Article  MathSciNet  Google Scholar 

  24. Friedlander, L.: An invariant measure for the equation \(u_{tt}-u_{xx}+u^3=0\). Commun. Math. Phys. 98, 1–16 (1985)

    Article  MathSciNet  Google Scholar 

  25. Fröhlich, J.: On the triviality of \(\lambda \Phi _d^4\) theories and the approach to the critical point in \(d_{(-)}>4\) dimensions. Nuclear Phys. B 200, 281–296 (1982)

    Article  MathSciNet  Google Scholar 

  26. Glimm, J., Jaffe, A.: Quantum Physics: A Functional Integral Point of View, 2nd edn. Springer-Verlag, New York (1987)

    Book  Google Scholar 

  27. Gubinelli, M., Hofmanová, M.: A PDE construction of the Euclidean \(\Phi _3^4\) quantum field theory. Commun. Math. Phys. 384, 1–75 (2021)

    Article  Google Scholar 

  28. Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi 3, e6 (2015)

    Article  MathSciNet  Google Scholar 

  29. Gubinelli, M., Koch, H., Oh, T.: Paracontrolled approach to the three-dimensional stochastic nonlinear wave equation with quadratic nonlinearity. J. Eur. Math. Soc. (2023). https://doi.org/10.4171/JEMS/1294

    Article  Google Scholar 

  30. Hairer, M.: A theory of regularity structures. Invent. Math. 198, 269–504 (2014)

    Article  MathSciNet  Google Scholar 

  31. Hairer, M.: Introduction to regularity structures. Braz. J. Probab. Stat. 29, 175–210 (2015)

    Article  MathSciNet  Google Scholar 

  32. Hairer, M., Matetski, K.: Discretisations of rough stochastic PDEs. Ann. Probab. 46, 1651–1709 (2018)

    Article  MathSciNet  Google Scholar 

  33. Iwata, K.: An infinite dimensional stochastic differential equation with state space \(C(\mathbb{R} )\). Probab. Theory Related Fields 74, 141–159 (1987)

    Article  MathSciNet  Google Scholar 

  34. Lebowitz, J.L., Rose, R.A., Speer, E.R.: Statistical mechanics of the nonlinear Schrödinger equation. J. Statist. Phys. 50, 657–687 (1988)

    Article  MathSciNet  Google Scholar 

  35. Lührmann, J., Mendelson, D.: Random data Cauchy theory for nonlinear wave equations of power type on \(\mathbb{R} ^3\). Commun. Partial Differ. Equ. 39, 2262–2283 (2014)

    Article  Google Scholar 

  36. Liu, R.: On the probabilistic well-posedness of the two-dimensional periodic nonlinear Schrödinger equation with the quadratic nonlinearity \(|u|^2\). J. Math. Pures Appl. 171, 75–101 (2023)

    Article  MathSciNet  Google Scholar 

  37. Moinat, A., Weber, H.: Space-time localisation for the dynamic \(\Phi _3^4\) model. Commun. Pure Appl. Math. 73, 2519–2555 (2020)

    Article  Google Scholar 

  38. Mourrat, J.-C., Weber, H.: The dynamic \(\Phi ^4_3\) model comes down from infinity. Commun. Math. Phys. 356, 673–753 (2017)

    Article  Google Scholar 

  39. Mourrat, J.-C., Weber, H.: Global well-posedness of the dynamic \(\Phi ^4\) model in the plane. Ann. Probab. 45, 2398–2476 (2017)

    Article  MathSciNet  Google Scholar 

  40. Nelson, E.: A quartic interaction in two dimensions. In: Mathematical Theory of Elementary Particles (Proc. Conf., Dedham, Mass., 1965), pp. 69–73. M.I.T. Press, Cambridge, Mass. (1966)

  41. Oh, T., Okamoto, M.: Comparing the stochastic nonlinear wave and heat equations: a case study. (2019) arXiv:1908.03490

  42. Oh, T., Okamoto, M., Tolomeo, L.: Stochastic quantization of the \(\Phi ^3_3\)-model. (2021) arXiv:2108.06777

  43. Oh, T., Thomann, L.: Invariant Gibbs measures for the 2-\(d\) defocusing nonlinear wave equations. Ann. Fac. Sci. Toulouse Math. 6(29), 1–26 (2020)

    Article  MathSciNet  Google Scholar 

  44. Parisi, G., Wu, Y.S.: Perturbation theory without gauge fixing. Sci. Sinica 24, 483–496 (1981)

    MathSciNet  Google Scholar 

  45. Peierls, R.: Zur kinetischen Theorie der Wärmeleitung in Kristallen. Ann. Phys. 395, 1055–1101 (1929)

    Article  Google Scholar 

  46. Weber, H.: Private communication

  47. Zhang, T., Fang, D.: Random dada Cauchy theory for the generalized incompressible Navier-Stokes equations. J. Math. Fluid. Mech. 14, 311–324 (2012)

    Article  MathSciNet  Google Scholar 

  48. Zhidkov, P.E.: An invariant measure for a nonlinear wave equation. Nonlinear Anal. 22, 319–325 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Y. D. is funded in part by NSF-DMS-2246908 and a Sloan Fellowship. A.N. is funded in part by NSF-DMS-2052740, NSF-DMS-2101381 and the Simons Foundation Collaboration Grant on Wave Turbulence (Nahmod’s Award ID 651469). H.Y. is funded in part by the Shanghai Technology Innovation Action Plan (No.22JC1402400) and a Chinese overseas high-level young talents program (2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea R. Nahmod.

Additional information

Dedicated to Carlos E. Kenig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Nahmod, A.R. & Yue, H. The Probabilistic Scaling Paradigm. Vietnam J. Math. (2024). https://doi.org/10.1007/s10013-023-00672-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10013-023-00672-w

Keywords

Mathematics Subject Classification (2010)

Navigation