Skip to main content
Log in

One-dimensional Te nanostructures as fast anode materials of potassium ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Potassium-ion batteries (PIBs) exhibit a comparable performance to the commercial lithium-ion batteries. The development of the suitable anode materials for PIBs is long-requested to improve the performance of batteries. In our work, the controlled fabrication of different one-dimensional (1D) Te nanostructures including nanotubes and nanorods is realized by tuning the pH of maternal synthetic solutions. Such a 1D preferential growth nature favors the fast electronic transportation along the longitudinal direction compared with other planar or spherical nanostructures. Moreover, in contrast to nanorods, the Te nanotubes are characterized with hollow channels and thus can release the stress generated during the discharging, retaining the integrity of electrodes. When working as the anode materials for PIBs, the Te nanotube electrode is superior to the nanorod counterpart. Specifically, it offers the cycling performance with about 218.7 mAh g−1 after 500 cycles at 0.1 A g−1 and excellent rate capability (113.2 mAh g−1 at 2.5 A g−1). Even cycling for 1000 cycles at 1 A g−1, the Te nanotube electrode still delivers a notable capacity retention rate of 99.9% with the final discharge capacity stable at 112 mAh g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data will be available from the authors with reasonable request.

References

  1. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  CAS  PubMed  Google Scholar 

  2. Su D, Mcdonagh A, Qiao SZ et al (2017) High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv Mater 29:1604007

    Article  Google Scholar 

  3. Theerthagiri J, Senthil RA, Senthilkumar B et al (2017) Recent advances in MoS2 nanostructured materials for energy and environmental applications- A review. J Solid State Chem 252:43–71

    Article  CAS  Google Scholar 

  4. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  PubMed  Google Scholar 

  5. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    Article  CAS  PubMed  Google Scholar 

  6. Poizot P, Laruelle S, Grugeon S et al (2000) Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  CAS  PubMed  Google Scholar 

  7. Armand M, Grugeon S, Vezin H et al (2009) Conjugated dicarboxylate anodes for Li-ion batteries. Nat Mater 8:120–125

    Article  CAS  PubMed  Google Scholar 

  8. Wei J, Zhang PB, Liu YZ et al (2023) Wide-voltage-window amphiphilic supramolecule excluded-volume electrolytes for ultra-durable full-cell aqueous potassium-Ion batteries. Chem Eng J 459:141623

    Article  CAS  Google Scholar 

  9. Zhang WC, Liu YJ, Guo ZP (2019) Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci Adv 5:13

    Google Scholar 

  10. Zhu YH, Zhang Q, Yang X et al (2019) Reconstructed orthorhombic V2O5 polyhedra for fast ion diffusion in K-ion batteries. Chem 5:168–179

    Article  CAS  Google Scholar 

  11. Jin H, Wang H, Qi Z et al (2020) A black phosphorus-graphite composite anode for Li-/Na-/K-Ion batteries. Angew Chem Int Ed 59:2318–2322

    Article  CAS  Google Scholar 

  12. Liu Q, Hu Z, Liang Y et al (2020) Facile synthesis of hierarchical hollow CoP@C composites with superior performance for sodium and potassium storage. Angew Chem Int Ed 59:5159–5164

    Article  CAS  Google Scholar 

  13. Hosaka T, Kubota K, Hameed AS et al (2020) Research development on K-ion batteries. Chem Rev 120:6358–6466

    Article  CAS  PubMed  Google Scholar 

  14. Fan L, Ma R, Wang J et al (2018) An ultrafast and highly stable potassium-organic battery. Adv Mater 30:e1805486

    Article  PubMed  Google Scholar 

  15. Gao L, Wang ZJ, Zhang LL et al (2022) Potassium ion anode versus sodium ion anode: potato starch residue derived carbon material as a case study. J Solid State Electr 26:343–352

    Article  CAS  Google Scholar 

  16. Sun L, Song XY, Liu YX et al (2021) Spongy-like N, S-codoped ultrathin layered carbon assembly for realizing high performance sodium-ion batteries. FlatChem 28:100258

    Article  CAS  Google Scholar 

  17. Sun L, Xie J, Zhang XX et al (2020) Controllable synthesis of nitrogen-doped carbon nanobubbles to realize high-performance lithium and sodium storage. Dalton Trans 49:15712–15717

    Article  CAS  PubMed  Google Scholar 

  18. Wu JX, He JB, Wang MX et al (2023) Electrospun carbon-based nanomaterials for next-generation potassium batteries. Chem Commun 59:2381–2398

    Article  CAS  Google Scholar 

  19. Yang YL, Wang J, Liu SQ et al (2022) Nature of bismuth and antimony based phosphate nanobundles/graphene for superior potassium ion batteries. Chem Eng J 435:134746

    Article  CAS  Google Scholar 

  20. Huang XL, Sun JC, Wang LP et al (2021) Advanced high-performance potassium–chalcogen (S, Se, Te) Batteries. Small 17:2004369

    Article  CAS  Google Scholar 

  21. Ma LB, Lv YH, Wu JX et al (2021) Recent advances in anode materials for potassium-ion batteries: a review. Nano Res 14:4442–4470

    Article  CAS  Google Scholar 

  22. Guo K, Xi BJ, Wei R et al (2020) Hierarchical microcables constructed by CoP@C⊂carbon framework intertwined with carbon nanotubes for efficient lithium storage. Adv Energy Mater 10:1902913

    Article  CAS  Google Scholar 

  23. Peng Q, Zhang S, Yang H et al (2020) Boosting potassium storage performance of the Cu2S anode via morphology engineering and electrolyte chemistry. ACS Nano 14:6024–6033

    Article  CAS  PubMed  Google Scholar 

  24. Sun X, Zhang B, Chen M et al (2022) Space-confined growth of Bi2Se3 nanosheets encapsulated in N-doped carbon shell lollipop-like composite for full/half potassium-ion and lithium-ion batteries. Nano Today 43:101408

    Article  CAS  Google Scholar 

  25. Hu J, Xie Y, Zheng J et al (2020) Unveiling nanoplates-assembled Bi2MoO6 microsphere as a novel anode material for high performance potassium-ion batteries. Nano Res 13:2650–2657

    Article  CAS  Google Scholar 

  26. Mao ML, Cui CY, Wu MG et al (2018) Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery. Nano Energy 45:346–352

    Article  CAS  Google Scholar 

  27. Cui RC, Zhou HY, Li JC et al (2021) Ball-cactus-like Bi embedded in N-riched carbon nanonetworks enables the best potassium storage performance. Adv Funct Mater 31:2103067

    Article  CAS  Google Scholar 

  28. Bai J, Xi BJ, Mao HZ et al (2018) One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv Mater 30:1802310

    Article  Google Scholar 

  29. He YK, Liu XY, Wang S et al (2024) FeS quantum dots as an ultrastable host material for potassium-ion intercalation. J Solid State Electr 28:49–59

    Article  CAS  Google Scholar 

  30. Wang MY, Li Y, Yao SS et al (2023) Conversion mechanism of NiCo2Se4 nanotube sphere anodes for potassium-ion batteries. Energy Mater Dev 1:9370001

    Google Scholar 

  31. Fu T, Li P, He H et al (2023) Electrospinning with sulfur powder to prepare CNF@G-Fe9S10 nanofibers with controllable particles distribution for stable potassium-ion storage. Rare Met 42:111–112

    Article  CAS  Google Scholar 

  32. Li Z, Liu J, Huo X et al (2019) Novel one-dimensional hollow carbon nanotubes/selenium composite for high-performance Al-Se batteries. ACS Appl Mater Interfaces 11:45709–45716

    Article  CAS  PubMed  Google Scholar 

  33. Liu Q, Deng WZ, Sun C-F (2020) A potassium–tellurium battery. Energy Storage Mater 28:10–16

    Article  CAS  Google Scholar 

  34. Liu F, Meng J, Wang H et al (2022) In situ atomic-scale observation of electrochemical (De)potassiation in Te nanowires. Small 18:e2200844

    Article  PubMed  Google Scholar 

  35. Yu D, Li Q, Zhang W et al (2022) Amorphous tellurium-embedded hierarchical porous carbon nanofibers as high-rate and long-life electrodes for potassium-ion batteries. Small 18:e2202750

    Article  PubMed  Google Scholar 

  36. Ge X, Yin L (2019) S-doping induced boosted electrochemical redox kinetics in Te1-xSx nanorod cathodes for high volumetric capacity Li-Te batteries. Energy Storage Mater 20:89–97

    Article  Google Scholar 

  37. Wang X, Qian K, Zhou M et al (2021) Hierarchical microspheres constructed by Te@N-doped carbon for efficient potassium storage. Eur J Inorg Chem 2021:2141–2147

    Article  CAS  Google Scholar 

  38. Dong S, Yu D, Yang J et al (2020) Tellurium: a high-volumetric-capacity potassium-ion battery electrode material. Adv Mater 32:e1908027

    Article  PubMed  Google Scholar 

  39. Liu D, Yang L, Chen Z et al (2020) Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries. Sci Bull 65:1003–1012

    Article  CAS  Google Scholar 

  40. Han J, Zhu K, Liu P et al (2019) N-doped CoSb@C nanofibers as a self-supporting anode for high-performance K-ion and Na-ion batteries. J Mater Chem A 7:25268–25273

    Article  CAS  Google Scholar 

  41. Wei R, Huang M, Ma W et al (2020) N-doped carbon nanotubes formed in a wide range of temperature and ramping rate for fast sodium storage. J Energy Chem 49:136–146

    Article  Google Scholar 

  42. Wang P, Li C, Dong S et al (2019) One-step route synthesized Co2P/Ru/N-doped carbon nanotube hybrids as bifunctional electrocatalysts for high-performance Li-O2 batteries. Small 15:e1900001

    Article  PubMed  Google Scholar 

  43. Yu QY, Jiang B, Hu J et al (2018) Metallic octahedral CoSe2 threaded by N-doped carbon nanotubes: a flexible framework for high-performance potassium-ion batteries. Adv Sci 5:9

    Article  Google Scholar 

  44. Liu D, Huang X, Qu D et al (2018) Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy 52:1–10

    Article  CAS  Google Scholar 

  45. Wang YS, Wang ZP, Chen YJ et al (2018) Hyperporous sponge interconnected by hierarchical carbon nanotubes as a high-performance potassium-ion battery anode. Adv Mater 30:1802074

    Article  Google Scholar 

Download references

Funding

The authors acknowledge support from the project of Science and Technology Development Program of Traditional Chinese Medicine of Shandong Province (no. 2021M219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanling Zheng.

Ethics declarations

Comepting interest

The authors declare competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4727 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Wu, Q., Yun, Y. et al. One-dimensional Te nanostructures as fast anode materials of potassium ion batteries. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05902-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05902-w

Keywords

Navigation