Skip to main content
Log in

Zinc doped P2-type layered cathode for high-voltage and long-life sodium ion batteries: impacts of calcination temperature and cooling methods

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Sodium ion batteries (SIBs) are promising technique for energy storage applications. Cathode materials are keys to improve the energy density of SIBs. P2-type layered cathodes with low Na ion diffusion barrier attract great attention. However, it suffers structural instability at a high working voltage. Though many attempts were made, the cycle stability of P2-type layered cathodes with a high working voltage is still not satisfactory. In this work, zinc was used as a doping element for modification. When the doping amount is x = 0.1 (Na0.7Ni0.25Mn0.65Zn0.1O2), it presents enhanced cycle stability in the voltage range of 2.5–4.2 V. The impacts of calcination temperature and cooling methods were investigated. It was found that the material shows excellent stability when the material was calcined at 950 °C followed by natural cooling, the discharge capacity is 64.9 mAh g−1 over 1000 cycles with a capacity retention of 84.0% after 1000 cycles at 170 mA g−1, superior to those reported in literature. In situ XRD reveals a reversible phase transition from P2 to OP4 at the high voltage contributes to the excellent cycle stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657. https://doi.org/10.1038/451652a

    Article  CAS  PubMed  Google Scholar 

  2. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935. https://doi.org/10.1126/science.1212741

    Article  CAS  PubMed  Google Scholar 

  3. Li L, Fu L, Li M, Wang C, Zhao Z, Xie S, Lin H, Wu X, Liu H, Zhang L, Zhang Q, Tan L (2022) B-doped and La4NiLiO8-coated Ni-rich cathode with enhanced structural and interfacial stability for lithium-ion batteries. J Energy Chem 71:588–594. https://doi.org/10.1016/j.jechem.2022.04.037

    Article  CAS  Google Scholar 

  4. Akkinepally B, Reddy IN, Manjunath V, Reddy MV, Mishra YK, Ko TJ, Zaghib K, Shim J (2022) Temperature effect and kinetics, LiZr2(PO4)3 and Li1.2Al0.2Zr1.8(PO4)3 and electrochemical properties for rechargeable ion batteries. Int J Energy Res 46:14116–14132. https://doi.org/10.1002/er.8129

    Article  CAS  Google Scholar 

  5. Fang C, Huang Y, Zhang W, Han J, Deng Z, Cao Y, Yang H (2016) Routes to high energy cathodes of sodium-ion batteries. Adv Energy Mater 6:1501727. https://doi.org/10.1002/aenm.201501727

    Article  CAS  Google Scholar 

  6. Liu Y, Dai H, An Y, Fu L, An Q, Wu Y (2020) Facile and scalable synthesis of a sulfur, selenium and nitrogen co-doped hard carbon anode for high performance Na- and K-ion batteries. J Mater Chem A 8:14993–15001. https://doi.org/10.1039/D0TA04513F

    Article  CAS  Google Scholar 

  7. Deng J, Luo WB, Chou SL, Liu HK, Dou SX (2018) Sodium-ion batteries: from academic research to practical commercialization. Adv Energy Mater 8:1701428. https://doi.org/10.1002/aenm.201701428

    Article  CAS  Google Scholar 

  8. Dai Z, Mani U, Tan HT, Yan Q (2017) Advanced cathode materials for sodium-ion batteries: what determines our choices? Small Methods 1:1700098. https://doi.org/10.1002/smtd.201700098

    Article  CAS  Google Scholar 

  9. Wang X, Dong X, Feng X, Shi Q, Wang J, Yin X, Zhang J, Zhao Y (2023) In-plane BO3 configuration in P2 layered oxide enables outstanding long cycle performance for sodium ion batteries. Small Methods 7:2201201. https://doi.org/10.1002/smtd.202201201

    Article  CAS  Google Scholar 

  10. Li Y, Zhao Y, Feng X, Wang X, Shi Q, Wang J, Wang J, Zhang J, Hou Y (2022) A durable P2-type layered oxide cathode with superior low-temperature performance for sodium-ion batteries. Sci China Mater 65:328–336. https://doi.org/10.1007/s40843-021-1742-8

    Article  CAS  Google Scholar 

  11. Wu J, Xue Z, Yuan L, Ye J, Huang Q, Fu L, Wu Y (2022) Advances on Na-K liquid alloy-based batteries. J Energy Chem 71:313–323. https://doi.org/10.1016/j.jechem.2022.03.027

    Article  CAS  Google Scholar 

  12. Wang W, Wu M, Han P, Liu Y, He L, Huang Q, Wang J, Yan W, Fu L, Wu Y (2019) Understanding the behavior and mechanism of oxygen-deficient anatase TiO2 toward sodium storage. ACS Appl Mater Interfaces 11:3061–3069. https://doi.org/10.1021/acsami.8b19288

    Article  CAS  PubMed  Google Scholar 

  13. Alexey MG (2023) Recent commentaries on the expected performance, advantages and applications of sodium-ion batteries. Energy Mater 3:300010. https://doi.org/10.20517/energymater.2022.70

  14. Sathiya M, Hemalatha K, Ramesha K, Tarascon J-M, Prakash A (2012) Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chem Mater 24:1846–1853. https://doi.org/10.1021/cm300466b

    Article  CAS  Google Scholar 

  15. Kim D, Lee E, Slater M, Lu W, Rood S, Johnson CS (2012) Layered Na [Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application. Electrochem Commun 18:66–69. https://doi.org/10.1016/j.elecom.2012.02.020

    Article  CAS  Google Scholar 

  16. Wang X, Tamaru M, Okubo M, Yamada A (2013) Electrode properties of P2–Na2/3MnyCo1–yO2 as cathode materials for sodium-ion batteries. J Phys Chem C 117:15545–15551. https://doi.org/10.1021/jp406433z

    Article  CAS  Google Scholar 

  17. Buchholz D, Chagas LG, Vaalma C, Wu L, Passerini S (2014) Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material. J Mater Chem A 2:13415–13421. https://doi.org/10.1039/C4TA02627F

    Article  CAS  Google Scholar 

  18. Lu Y, Wang L, Cheng J, Goodenough JB (2012) Prussian blue: a new framework of electrode materials for sodium batteries. Chem Commun 48:6544–6546. https://doi.org/10.1039/C2CC31777J

    Article  CAS  Google Scholar 

  19. You Y, Wu X-L, Yin Y-X, Guo Y-G (2014) High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ Sci 7:1643–1647. https://doi.org/10.1039/C3EE44004D

    Article  CAS  Google Scholar 

  20. Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodenough JB (2013) A superior low-cost cathode for a Na-ion battery. Angew Chem 125:2018–2021. https://doi.org/10.1002/anie.201206854

    Article  CAS  Google Scholar 

  21. Zhang J, Wan J, Ou M, Liu S, Huang B, Xu J, Sun S, Xu Y, Lin Y, Fang C (2023) Enhanced all-climate sodium-ion batteries performance in a low-defect and Na-enriched Prussian blue analogue cathode by nickel substitution. Energy Mater 3:300008. https://doi.org/10.20517/energymater.2022.71

    Article  CAS  Google Scholar 

  22. Qian J, Wu C, Cao Y, Ma Z, Huang Y, Ai X, Yang H (2018) Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv Energy Mater 8:1702619. https://doi.org/10.1002/aenm.201702619

    Article  CAS  Google Scholar 

  23. Yang Y, Brownell C, Sadrieh N, May J, Del Grosso A, Place D, Leutzinger E, Duffy E, He R, Houn F (2007) Quantitative measurement of cyanide released from Prussian Blue. Clin Toxicol 45:776–781. https://doi.org/10.1080/15563650601181562

    Article  CAS  Google Scholar 

  24. Aparicio C, Machala L, Marusak Z (2012) Thermal decomposition of Prussian blue under inert atmosphere. J Therm Anal Calorim 110:661–669. https://doi.org/10.1007/s10973-011-1890-1

    Article  CAS  Google Scholar 

  25. Wang PF, You Y, Yin YX, Wang YS, Wan LJ, Gu L, Guo YG (2016) Suppressing the P2–O2 phase transition of Na0. 67Mn0. 67Ni0. 33O2 by magnesium substitution for improved sodium-ion batteries. Angew Chem 128:7571–7575. https://doi.org/10.1002/anie.201602202

    Article  CAS  Google Scholar 

  26. Li J-Y, Wu X-L, Zhang X-H, Lü H-Y, Wang G, Guo J-Z, Wan F, Wang R-S (2015) Romanechite-structured Na0.31MnO1.9 nanofibers as high-performance cathode material for a sodium-ion battery. Chem Commun 51:14848–14851. https://doi.org/10.1039/C5CC05739F

    Article  CAS  Google Scholar 

  27. Ellis B, Makahnouk W, Makimura Y, Toghill K, Nazar L (2007) A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater 6:749–753. https://doi.org/10.1038/nmat2007

    Article  CAS  PubMed  Google Scholar 

  28. Wang P-F, You Y, Yin Y-X, Guo Y-G (2016) An O3-type NaNi0.5Mn0.5O2 cathode for sodium-ion batteries with improved rate performance and cycling stability. J Mater Chem A 4:17660–17664. https://doi.org/10.1039/C6TA07589D

    Article  CAS  Google Scholar 

  29. Liu Y, Wang D, Li H, Li P, Sun Y, Liu Y, Liu Y, Zhong B, Wu Z, Guo X (2022) Research progress in O3-type phase Fe/Mn/Cu-based layered cathode materials for sodium ion batteries. J Mater Chem A 10:3869–3888. https://doi.org/10.1039/D1TA10329F

    Article  CAS  Google Scholar 

  30. Komaba S, Yabuuchi N, Nakayama T, Ogata A, Ishikawa T, Nakai I (2012) Study on the reversible electrode reaction of Na1–xNi0. 5Mn0. 5O2 for a rechargeable sodium-ion battery. Inorg Chem 51:6211–6220. https://doi.org/10.1021/ic300357d

    Article  CAS  PubMed  Google Scholar 

  31. Zhao S, Shi Q, Feng W, Liu Y, Yang X, Zou X, Lu X, Zhao Y (2023) Research progresses in O3-type Ni/Fe/Mn based layered cathode materials for sodium ion batteries. Carbon Neutrality 2:13. https://doi.org/10.1007/s43979-023-00053-9

    Article  Google Scholar 

  32. Feng J, Luo S-H, Wang J, Li P, Yan S, Li J, Hou P-Q, Wang Q, Zhang Y, Liu X (2022) Stable electrochemical properties of magnesium-doped Co-free layered P2-Type Na0.67Ni0.33Mn0.67O2 cathode material for sodium ion batteries. ACS Sustain Chem Eng 10:4994–5004. https://doi.org/10.1021/acssuschemeng.2c00197

    Article  CAS  Google Scholar 

  33. Zhou D, Zeng C, Xiang J, Wang T, Gao Z, An C, Huang W (2022) Review on Mn-based and Fe-based layered cathode materials for sodium-ion batteries. Ionics 28:2029–2040. https://doi.org/10.1007/s11581-022-04519-1

    Article  CAS  Google Scholar 

  34. Liu J, Jiang H, Sun C, Luo W, Mao J, Dai K (2020) P2-Structure layered composite metal oxide cathode materials for sodium ion batteries. Prog Chem 32:803. https://doi.org/10.7536/PC191004

    Article  CAS  Google Scholar 

  35. Shi Q, Qi R, Feng X, Wang J, Li Y, Yao Z, Wang X, Li Q, Lu X, Zhang J, Zhao Y (2022) Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries. Nat Commun 13:3205. https://doi.org/10.1038/s41467-022-30942-z

    Article  PubMed  PubMed Central  Google Scholar 

  36. Paulsen JM, Dahn JR (1999) Studies of the layered manganese bronzes, Na2/3[Mn1−xMx]O2 with M=Co, Ni, Li, and Li2/3[Mn1−xMx]O2 prepared by ion-exchange. Solid State Ionics 126:3–24. https://doi.org/10.1016/S0167-2738(99)00147-2

    Article  CAS  Google Scholar 

  37. Zhao W, Kirie H, Tanaka A, Unno M, Yamamoto S, Noguchi H (2014) Synthesis of metal ion substituted P2-Na2/3Ni1/3Mn2/3O2 cathode material with enhanced performance for Na ion batteries. Mater Lett 135:131–134. https://doi.org/10.1016/j.matlet.2014.07.153

    Article  CAS  Google Scholar 

  38. Lu Z, Dahn J (2001) In situ X-ray diffraction study of P2 Na2/3[Ni1/3Mn2/3]O2. J Electrochem Soc 148:A1225. https://doi.org/10.1149/1.1407247

    Article  CAS  Google Scholar 

  39. Wang H, Yang B, Liao X-Z, Xu J, Yang D, He Y-S, Ma Z-F (2013) Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges. Electrochim Acta 113:200–204. https://doi.org/10.1016/j.electacta.2013.09.098

    Article  CAS  Google Scholar 

  40. Zheng X, Li P, Zhu H, Rui K, Zhao G, Shu J, Xu X, Sun W, Dou SX (2018) New insights into understanding the exceptional electrochemical performance of P2-type manganese-based layered oxide cathode for sodium ion batteries. Energy Storage Mater 15:257–265. https://doi.org/10.1016/j.ensm.2018.05.001

    Article  Google Scholar 

  41. Wu X, Guo J, Wang D, Zhong G, McDonald MJ, Yang Y (2015) P2-type Na0.66Ni0.33–xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries. J Power Sources 281:18–26. https://doi.org/10.1016/j.jpowsour.2014.12.083

    Article  CAS  Google Scholar 

  42. Xu J, Lee DH, R. l. J. Clément, X. Yu, M. Leskes, A. J. Pell, G. Pintacuda, X.-Q. Yang, C. P. Grey, Y. S. Meng, (2014) Identifying the critical role of Li substitution in P2–Nax[LiyNizMn1–y–z]O2 (0< x, y, z< 1) intercalation cathode materials for high-energy Na-ion batteries. Chem Mater 26:1260–1269. https://doi.org/10.1021/cm403855t

    Article  CAS  Google Scholar 

  43. Li Z-Y, Gao R, Zhang J, Zhang X, Hu Z, Liu X (2016) New insights into designing high-rate performance cathode materials for sodium ion batteries by enlarging the slab-spacing of the Na-ion diffusion layer. J Mater Chem A 4:3453–3461. https://doi.org/10.1039/C5TA10589G

    Article  CAS  Google Scholar 

  44. Yoshida H, Yabuuchi N, Kubota K, Ikeuchi I, Garsuch A, Schulz-Dobrick M, Komaba S (2014) P2-type Na2/3Ni1/3Mn2/3-xTixO2 as a new positive electrode for higher energy Na-ion batteries. Chem Commun 50:3677–3680. https://doi.org/10.1039/C3CC49856E

    Article  CAS  Google Scholar 

  45. Yuan D, He W, Pei F, Wu F, Wu Y, Qian J, Cao Y, Ai X, Yang H (2013) Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries. J Mater Chem A 1:3895–3899. https://doi.org/10.1039/C3TA01430D

    Article  CAS  Google Scholar 

  46. Yuan D, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y (2014) P2-type Na0. 67Mn0. 65Fe0. 2Ni0. 15O2 cathode material with high-capacity for sodium-ion battery. Electrochim Acta 116:300–305. https://doi.org/10.1016/j.electacta.2013.10.211

    Article  CAS  Google Scholar 

  47. Singh G, Tapia-Ruiz N, Lopez del Amo JM, Maitra U, Somerville JW, Armstrong AR, Martinez de Ilarduya J, Rojo T, Bruce PG (2016) High voltage Mg-doped Na0.67Ni0.3–xMgxMn0.7O2 (x= 0.05, 0.1) Na-ion cathodes with enhanced stability and rate capability. Chem Mater 28:5087–5094. https://doi.org/10.1021/acs.chemmater.6b01935

    Article  CAS  Google Scholar 

  48. Zheng J, Yan P, Kan WH, Wang C, Manthiram A (2016) A spinel-integrated P2-type layered composite: high-rate cathode for sodium-ion batteries. J Electrochem Soc 163:A584. https://doi.org/10.1149/2.0041605jes

    Article  CAS  Google Scholar 

  49. Wang L, Sun Y-G, Hu L-L, Piao J-Y, Guo J, Manthiram A, Ma J, Cao A-M (2017) Copper-substituted Na0.67Ni0.3-xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition. J Mater Chem A 5:8752–8761. https://doi.org/10.1039/C7TA00880E

    Article  CAS  Google Scholar 

  50. Kubota K, Asari T, Komaba S (2023) Impact of Ti and Zn dual-substitution in P2 type Na2/3Ni1/3Mn2/3O2 on Ni–Mn and Na-vacancy ordering and electrochemical properties. Adv Mater 35:2300714. https://doi.org/10.1002/adma.202300714

    Article  CAS  Google Scholar 

  51. Kaliyappan K, Liu J, Xiao B, Lushington A, Li R, Sham TK, Sun X (2017) Enhanced performance of P2‐Na0.66(Mn0.54Co0.13Ni0.13)O2 cathode for sodium‐ion batteries by ultrathin metal oxide coatings via atomic layer deposition. Adv Funct Mater 27:1701870

    Article  Google Scholar 

  52. Liu Y, Fang X, Zhang A, Shen C, Liu Q, Enaya HA, Zhou C (2016) Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: the capacity decay mechanism and Al2O3 surface modification. Nano Energy 27:27–34. https://doi.org/10.1016/j.nanoen.2016.06.026

    Article  CAS  Google Scholar 

  53. Dang R, Li Q, Chen M, Hu Z, Xiao X (2019) CuO-coated and Cu2+-doped Co-modified P2-type Na2/3[Ni1/3Mn2/3]O2 for sodium-ion batteries. Phys Chem Chem Phys 21:314–321. https://doi.org/10.1039/C8CP06248J

    Article  CAS  Google Scholar 

  54. Liu Y, Yang J, Guo B, Han X, Yuan Q, Fu Q, Lin H, Liu G, Xu M (2018) Enhanced electrochemical performance of Na0.5Ni0.25Mn0.75O2 micro-sheets at 3.8 V for Na-ion batteries with nanosized-thin AlF3 coating. Nanoscale 10:12625–12630. https://doi.org/10.1039/C8NR02604A

    Article  CAS  PubMed  Google Scholar 

  55. You Y, Dolocan A, Li W, Manthiram A (2018) Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries. Nano Lett 19:182–188. https://doi.org/10.1021/acs.nanolett.8b03637

    Article  CAS  PubMed  Google Scholar 

  56. Chen X, Zhou X, Hu M, Liang J, Wu D, Wei J, Zhou Z (2015) Stable layered P3/P2 Na0.66Co0.5Mn0.5O2 cathode materials for sodium-ion batteries. J Mater Chem A 3:20708–20714. https://doi.org/10.1039/C5TA05205J

    Article  CAS  Google Scholar 

  57. Song B, Hu E, Liu J, Zhang Y, Yang X-Q, Nanda J, Huq A, Page K (2019) A novel P3-type Na2/3Mg1/3Mn2/3O2 as high capacity sodium-ion cathode using reversible oxygen redox. J Mater Chem A 7:1491–1498. https://doi.org/10.1039/C8TA09422E

    Article  CAS  Google Scholar 

  58. Zhou Y-N, Wang P-F, Niu Y-B, Li Q, Yu X, Yin Y-X, Xu S, Guo Y-G (2019) A P2/P3 composite layered cathode for high-performance Na-ion full batteries. Nano Energy 55:143–150. https://doi.org/10.1016/j.nanoen.2018.10.072

    Article  CAS  Google Scholar 

  59. Chen T, Liu W, Gao H, Zhuo Y, Hu H, Chen A, Zhang J, Yan J, Liu K (2018) A P2-type Na0.44Mn0.6Ni0.3Cu0.1O2 cathode material with high energy density for sodium-ion batteries. J Mater Chem A 6:12582–12588. https://doi.org/10.1039/C8TA04791J

    Article  CAS  Google Scholar 

  60. Kang W, Yu DYW, Lee P-K, Zhang Z, Bian H, Li W, Ng T-W, Zhang W, Lee C-S (2016) P2-type NaxCu0.15Ni0.20Mn0.65O2 cathodes with high voltage for high-power and long-life sodium-ion batteries. ACS Appl Mater Interfaces 8:31661–31668. https://doi.org/10.1021/acsami.6b10841

    Article  CAS  PubMed  Google Scholar 

  61. Yuan DD, Wang YX, Cao YL, Ai XP, Yang HX (2015) Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries. ACS Appl Mater Interfaces 7:8585–8591. https://doi.org/10.1021/acsami.5b00594

    Article  CAS  PubMed  Google Scholar 

  62. Feng J, Luo S-H, Qian L, Yan S, Wang Q, Ji X, Zhang Y, Liu X, Hou P, Teng F (2023) Properties of the “Z”-Phase in Mn-Rich P2-Na0.67Ni0.1Mn0.8Fe0.1O2 as Sodium-Ion-Battery Cathodes. Small 19:2208005. https://doi.org/10.1002/smll.202208005

    Article  CAS  Google Scholar 

  63. Feng J, Luo S-H, Sun M, Cong J, Yan S, Wang Q, Zhang Y, Liu X, Mu W, Hou P-Q (2022) Investigation of Ti-substitution and MnPO4 coating effects on structural and electrochemical properties of P2-Na0.67TixNi0.33Mn0.67-xO2 cathode materials. Appl Surf Sci 600:154147. https://doi.org/10.1016/j.apsusc.2022.154147

    Article  CAS  Google Scholar 

  64. Dong X, Wang X, Lu Z, Shi Q, Yang Z, Yu X, Feng W, Zou X, Liu Y, Zhao Y (2023) Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chin Chem Lett 108605. https://doi.org/10.1016/j.cclet.2023.108605

  65. Zuo W, Qiu J, Hong C, Liu X, Li J, Ortiz GF, Li Q, Zheng S, Zheng GR, Yang Y (2019) Structure-performance relationship of Zn2+ substitution in P2–Na0. 66Ni0. 33Mn0. 67O2 with different Ni/Mn ratios for high-energy sodium-ion batteries. ACS Appl Energy Mater 2:4914–4924. https://doi.org/10.1021/acsaem.9b00614

    Article  CAS  Google Scholar 

  66. Hong J-H, Wang M-Y, Du Y-Y, Deng L, He G (2019) The role of Zn substitution in P2-type Na0.67Ni0.23Zn0.1Mn0.67O2 cathode for inhibiting the phase transition at high potential and dissolution of manganese at low potential. J. Mater. Sci.: Mater. Electron 30:4006–4013. https://doi.org/10.1007/s10854-019-00687-5

    Article  CAS  Google Scholar 

  67. Nguyen N-A, Kim K, Choi KH, Jeon H, Lee K, Ryou M-H, Lee YM (2016) Effect of calcination temperature on a P-type Na0. 6Mn0. 65Ni0. 25Co0. 10O2 cathode material for sodium-ion batteries. J Electrochem Soc 164:A6308. https://doi.org/10.1149/2.0511701jes

  68. Chagas L, Buchholz D, Vaalma C, Wu L, Passerini S (2014) P-type NaxNi0.22Co0.11Mn0.66O2 materials: linking synthesis with structure and electrochemical performance. J Mater Chem A 2:20263–20270. https://doi.org/10.1039/C4TA03946G

    Article  CAS  Google Scholar 

  69. Liu X, Zhong G, Xiao Z, Zheng B, Zuo W, Zhou K, Liu H, Liang Z, Xiang Y, Chen Z, Ortiz GF, Fu R, Yang Y (2020) Al and Fe-containing Mn-based layered cathode with controlled vacancies for high-rate sodium ion batteries. Nano Energy 76:104997. https://doi.org/10.1016/j.nanoen.2020.104997

    Article  CAS  Google Scholar 

  70. Wang P-F, Jin T, Zhang J, Wang Q-C, Ji X, Cui C, Piao N, Liu S, Xu J, Yang X-Q (2020) Elucidation of the Jahn-Teller effect in a pair of sodium isomer. Nano Energy 77:105167. https://doi.org/10.1016/j.nanoen.2020.105167

    Article  CAS  Google Scholar 

  71. Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S (2012) P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11:512–517. https://doi.org/10.1038/nmat3309

    Article  CAS  PubMed  Google Scholar 

  72. Lee DH, Xu J, Meng YS (2013) An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys 15:3304–3312. https://doi.org/10.1039/C2CP44467D

    Article  CAS  PubMed  Google Scholar 

  73. Wang Q-C, Meng J-K, Yue X-Y, Qiu Q-Q, Song Y, Wu X-J, Fu Z-W, Xia Y-Y, Shadike Z, Wu J (2018) Tuning P2-structured cathode material by Na-site Mg substitution for Na-ion batteries. J Am Chem Soc 141:840–848. https://doi.org/10.1021/jacs.8b08638

    Article  CAS  PubMed  Google Scholar 

  74. Rong X, Liu J, Hu E, Liu Y, Wang Y, Wu J, Yu X, Page K, Hu Y-S, Yang W (2018) Structure-induced reversible anionic redox activity in Na layered oxide cathode. Joule 2:125–140. https://doi.org/10.1016/j.joule.2017.10.008

    Article  CAS  Google Scholar 

  75. Parant J-P, Olazcuaga R, Devalette M, Fouassier C, Hagenmuller P (1971) Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1). J Solid State Chem 3:1–11. https://doi.org/10.1016/0022-4596(71)90001-6

    Article  CAS  Google Scholar 

  76. Wu X, Xu G-L, Zhong G, Gong Z, McDonald MJ, Zheng S, Fu R, Chen Z, Amine K, Yang Y (2016) Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries. ACS Appl Mater Interfaces 8:22227–22237. https://doi.org/10.1021/acsami.6b06701

    Article  CAS  PubMed  Google Scholar 

  77. Peng B, Sun Z, Zhao L, Li J, Zhang G (2021) Dual-manipulation on P2-Na0.67Ni0.33Mn0.67O2 layered cathode toward sodium-ion full cell with record operating voltage beyond 3.5 V. Energy Storage Mater 35:620–629. https://doi.org/10.1016/j.ensm.2020.11.037

    Article  Google Scholar 

  78. Pang W-L, Zhang X-H, Guo J-Z, Li J-Y, Yan X, Hou B-H, Guan H-Y, Wu X-L (2017) P2-type Na2/3Mn1-xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. J Power Sources 356:80–88. https://doi.org/10.1016/j.jpowsour.2017.04.076

    Article  CAS  Google Scholar 

  79. Li J, Shunmugasundaram R, Doig R, Dahn JR (2016) In Situ X-ray Diffraction Study of Layered Li–Ni–Mn–Co Oxides: Effect of Particle Size and Structural Stability of Core-Shell Materials. Chem Mater 28:162–171. https://doi.org/10.1021/acs.chemmater.5b03500

    Article  CAS  Google Scholar 

  80. Clément RJ, Billaud J, Armstrong AR, Singh G, Rojo T, Bruce PG, Grey CP (2016) Structurally stable Mg-doped P2-Na2/3Mn1-yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies. Energy Environ Sci 9:3240–3251. https://doi.org/10.1039/C6EE01750A

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Lixuan Yuan and Xiangpeng Yang contribute equally to this work.

Funding

The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (52122209) and Jiangsu Province Carbon Peak and Neutrality Innovation Program (Industry tackling on prospect and key technology) (BE2022002-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinhai Yuan or Lijun Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1186 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Yang, X., Huang, Q. et al. Zinc doped P2-type layered cathode for high-voltage and long-life sodium ion batteries: impacts of calcination temperature and cooling methods. J Solid State Electrochem 28, 535–544 (2024). https://doi.org/10.1007/s10008-023-05706-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05706-4

Keywords

Navigation