Skip to main content
Log in

Formic acid oxidation on Pd/RuO2: does the RuO2 support enhance the electrocatalytic activity of Pd nanoparticles?

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The aim of this work was to study the effect of a RuO2 support on the activity of Pd nanoparticles for formic acid oxidation, comparing the results with those obtained for Pd/C. In contrast with reports of enhancing effects of RuO2 for other systems, such as methanol oxidation on Pt particles, our data reveal a detrimental effect of the RuO2 support on the activity of Pd nanoparticles for the oxidation of formic acid. FTIR spectra show CO2 formation at potentials as low as 0.10 V and absence of adsorbed CO signals, suggesting that a bifunctional mechanism involving OH species on the oxide support surface does not occur nor has a significant contribution and that formic acid oxidation on Pd/RuO2 and Pd/C takes place by the direct pathway. The unfavorable effect of the RuO2 support on activity seems likely to be due to metal-support interactions that modify the Pd electronic properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Capon A, Parsons R (1973) Oxidation of formic-acid at noble-metal electrodes. 1. Review of previous work. J Electroanal Chem 44:1–7. https://doi.org/10.1016/s0022-0728(73)80508-x

    Article  CAS  Google Scholar 

  2. Capon A, Parsons R (1973) Oxidation of formic-acid on noble-metal electrodes. 2. Comparison of behavior of pure electrodes. J Electroanal Chem 44:239–254. https://doi.org/10.1016/s0022-0728(73)80250-5

    Article  CAS  Google Scholar 

  3. Capon A, Parsons R (1973) Oxidation of formic-acid at noble-metal electrodes Part. 3. Intermediates and mechanism on platinum-electrodes. J Electroanal Chem 45:205–231. https://doi.org/10.1016/0368-1874(73)85076-2

    Article  CAS  Google Scholar 

  4. Capon A, Parsons R (1975) Oxidation of formic-acid at noble-metal electrodes. 4. Platinum + palladium alloys. J Electroanal Chem 65:285–305. https://doi.org/10.1016/0368-1874(75)85124-0

    Article  CAS  Google Scholar 

  5. Besenhard JO, Parsons R, Reeves RM (1979) Role of surface oxides in formic-acid oxidation on Au. J Electroanal Chem 96:57–72. https://doi.org/10.1016/s0022-0728(79)80302-2

    Article  CAS  Google Scholar 

  6. Rice C, Ha RI, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) Direct formic acid fuel cells. J Power Sources 111:83–89. https://doi.org/10.1016/s0378-7753(02)00271-9

    Article  CAS  Google Scholar 

  7. Yu XW, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182:124–132. https://doi.org/10.1016/j.jpowsour.2008.03.075

    Article  CAS  Google Scholar 

  8. Miesse CM, Jung WS, Jeong KJ, Lee JK, Lee J, Yoon HJ, SP, Nam SW, Lim TH, Hong SA (2006) Direct formic acid fuel cell portable power system for the operation of a laptop computer. J Power Sources 162:532–540. https://doi.org/10.1016/j.jpowsour.2006.07.013

    Article  CAS  Google Scholar 

  9. Rees NV, Compton RG (2011) Sustainable energy: a review of formic acid electrochemical fuel cells. J Solid State Electr 15:2095–2100. https://doi.org/10.1007/s10008-011-1398-4

    Article  CAS  Google Scholar 

  10. Jeong KJ, Miesse CA, Choi JH, Lee J, Han J, Yoon SP, Nam SW, Lim TH, Lee TG (2007) Fuel crossover in direct formic acid fuel cells. J Power Sources 168:119–125. https://doi.org/10.1016/j.jpowsour.2007.02.062

    Article  CAS  Google Scholar 

  11. Rhee YW, Ha SY, Masel RI (2003) Crossover of formic acid through Nafion((R)) membranes. J Power Sources 117:35–38. https://doi.org/10.1016/s0378-7753(03)00352-5

    Article  CAS  Google Scholar 

  12. Wang X, Hu JM, Hsing IM (2004) Electrochemical investigation of formic acid electro-oxidation and its crossover through a Nafion (R) membrane. J Electroanal Chem 562:73–80. https://doi.org/10.1016/j.jelechem.2003.08.010

    Article  CAS  Google Scholar 

  13. Rice C, Ha S, Masel RI, Wieckowski A (2003) Catalysts for direct formic acid fuel cells. J Power Sources 115:229–235. https://doi.org/10.1016/s0378-7753(03)00026-0

    Article  CAS  Google Scholar 

  14. Zhu YM, Khan Z, Masel RI (2005) The behavior of palladium catalysts in direct formic acid fuel cells. J Power Sources 139:15–20. https://doi.org/10.1016/j.jpowsour.2004.06.054

    Article  CAS  Google Scholar 

  15. Liu Z, Hong L, Tham MP, Lim TH, Jiang H (2006) Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. J Power Sources 161:831–835. https://doi.org/10.1016/j.jpowsour.2006.05.052

    Article  CAS  Google Scholar 

  16. Zhang L, Lu T, Bao J, Tang Y, Li C (2006) Preparation method of an ultrafine carbon supported Pd catalyst as an anodic catalyst in a direct formic acid fuel cell. Electrochem Commun 8:1625–1627. https://doi.org/10.1016/j.elecom.2006.07.033

    Article  CAS  Google Scholar 

  17. Zhu YM, Ha SY, Masel RI (2004) High power density direct formic acid fuel cells. J Power Sources 130:8–14. https://doi.org/10.1016/j.jpowsour.2003.11.051

    Article  CAS  Google Scholar 

  18. Mikolajczuk-Zychora A, Borodzinski A, Kedzierzawski P, Mierzwa B, Mazurkiewicz-Pawlicka M, Stobinski L, Ciecierska E, Zimoch A, Opallo M (2016) Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells. Appl Surf Sci 388:645–652. https://doi.org/10.1016/j.apsusc.2016.02.065

    Article  CAS  Google Scholar 

  19. Sun SG, Clavilier J, Bewick A (1988) The mechanism of electrocatalytic oxidation of formic acid on Pt (100) and Pt (111) in sulphuric acid solution: an emirs study. J Electroanal Chem 240:147–159. https://doi.org/10.1016/0022-0728(88)80319-X

    Article  CAS  Google Scholar 

  20. Liu HX, Tian N, Brandon MP, Pei J, Huangfu ZC, Zhan C, Zhou ZY, Hardacre C, Lin WF, Sun SG (2012) Enhancing the activity and tuning the mechanism of formic acid oxidation at tetrahexahedral Pt nanocrystals by Au decoration. Phys Chem Chem Phys 14:16415–16423. https://doi.org/10.1039/c2cp42930f

    Article  CAS  PubMed  Google Scholar 

  21. Cappellari PS, Garcia G, Florez-Montano J, Barbero CA, Pastor E, Planes GA (2015) Enhanced formic acid oxidation on polycrystalline platinum modified by spontaneous deposition of gold. Fourier transform infrared spectroscopy studies. J Power Sources 296:290–297. https://doi.org/10.1016/j.jpowsour.2015.07.005

    Article  CAS  Google Scholar 

  22. Cuesta A, Cabello G, Osawa M, Gutierrez C (2012) Mechanism of the electrocatalytic oxidation of formic acid on metals. ACS Catal 2:728–738. https://doi.org/10.1021/cs200661z

    Article  CAS  Google Scholar 

  23. Cuesta A, Cabello G, Hartl FW, Escudero-Escribano M, Vaz-Dominguez C, Kibler LA, Osawa M, Gutierrez C (2013) Electrooxidation of formic acid on gold: an ATR-SEIRAS study of the role of adsorbed formate. Catal Today 202:79–86. https://doi.org/10.1016/j.cattod.2012.04.022

    Article  CAS  Google Scholar 

  24. Beltramo GL, Shubina TE, Koper MTM (2005) Oxidation of formic acid and carbon monoxide on gold electrodes studied by surface enhanced Raman spectroscopy and DFT. ChemPhysChem 6:2597–2606. https://doi.org/10.1002/cphc.200500198

    Article  CAS  PubMed  Google Scholar 

  25. Villullas HM, Mattos-Costa FI, Bulhoes LOS (2004) Electrochemical oxidation of methanol on Pt nanoparticles dispersed on RuO2. J Phys Chem B 108:12898–12903. https://doi.org/10.1021/jp049662r

    Article  CAS  Google Scholar 

  26. Lasch K, Hayn G, Jörissen L, Garche J, Besenhardt O (2002) Mixed conducting catalyst support materials for the direct methanol fuel cell. J Power Sources 105:305–310. https://doi.org/10.1016/S0378-7753(01)00956-9

    Article  CAS  Google Scholar 

  27. Ciapina EG, Santos SF, Gonzalez ER (2013) The electro-oxidation of carbon monoxide and ethanol on supported Pt nanoparticles: the influence of the support and catalyst microstructure. J Solid State Electr 17:1831–1842. https://doi.org/10.1007/s10008-013-2120-5

    Article  CAS  Google Scholar 

  28. Villullas HM, Mattos-Costa FI, Nascente PAP, Bulhoes LOS (2006) Sol-gel prepared Pt-modified oxide layers: synthesis, characterization, and electrocatalytic activity. Chem Mater 18:5563–5570. https://doi.org/10.1021/cm0601178

    Article  CAS  Google Scholar 

  29. Villullas HM, Mattos-Costa FI, Nascente PAP, Bulhoes LOS (2004) Anodic oxidation of formaldehyde on Pt-modified SnO2 thin film electrodes prepared by a sol-gel method. Electrochim Acta 49:3909–3916. https://doi.org/10.1016/j.electacta.2004.01.079

    Article  CAS  Google Scholar 

  30. Kulesza PJ, Pieta IS, Rutkowska IA, Wadas A, Marks D, Klak K, Stobinski L, Cox JA (2013) Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides. Electrochim Acta 110:474–483. https://doi.org/10.1016/j.electacta.2013.06.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alvarenga GM, Villullas HM (2017) Transition metal oxides in the electrocatalytic oxidation of methanol and ethanol on noble metal nanoparticles. Curr Opin Electrochem 4:39–44. https://doi.org/10.1016/j.coelec.2017.09.004

    Article  CAS  Google Scholar 

  32. Antolini E, Gonzalez ER (2009) Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ionics 180:746–763. https://doi.org/10.1016/j.ssi.2009.03.007

    Article  CAS  Google Scholar 

  33. Micoud F, Maillard F, Bonnefont A, Job N, Chatenet M (2010) The role of the support in COads monolayer electrooxidation on Pt nanoparticles: Pt/WOx vs. Pt/C Phys Chem Chem Phys 12:1182–1193. https://doi.org/10.1039/b915244j

    Article  CAS  PubMed  Google Scholar 

  34. Nicole J, Tsiplakides D, Pliangos C, Verykios XE, Comninellis C, Vayenas CG (2001) Electrochemical promotion and metal-support interactions. J Catal 204:23–34. https://doi.org/10.1006/jcat.2001.3360

    Article  CAS  Google Scholar 

  35. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions. Group-8 Noble-metals supported on TiO2. J Am Chem Soc 100:170–175. https://doi.org/10.1021/ja00469a029

    Article  CAS  Google Scholar 

  36. Tauster SJ, Fung SC (1978) Strong metal-support interactions: occurrence among binary oxides of groups IIA-VB. J Catal 55:29–35. https://doi.org/10.1016/0021-9517(78)90182-3

    Article  CAS  Google Scholar 

  37. Park KW, Ahn KS, Nah YC, Choi JH, Sung YE (2003) Electrocatalytic enhancement of methanol oxidation at Pt-WOx nanophase electrodes and in-situ observation of hydrogen spillover using electrochromism. J Phys Chem B 107:4352–4355. https://doi.org/10.1021/jp022515d

    Article  CAS  Google Scholar 

  38. Jones S, Tedsree K, Sawangphruk M, Foord JS, Fisher J, Thompsett D, Tsang SCE (2010) Promotion of direct methanol electro-oxidation by Ru terraces on Pt by using a reversed spillover mechanism. ChemCatChem 2:1089–1095. https://doi.org/10.1002/cctc.201000106

    Article  CAS  Google Scholar 

  39. Yoo SJ, Lee KS, Cho YH, Kim SK, Lim TH, Sung YE (2011) Electrocatalytic properties of TiO2-embedded Pt nanoparticles in oxidation of methanol: particle size effect and proton spillover effect. Electrocatalysis 2:297–306. https://doi.org/10.1007/s12678-011-0066-x

    Article  CAS  Google Scholar 

  40. Trasatti S, Buzzanca G (1971) Ruthenium dioxide: a new interesting electrode material. Solid state structure and electrochemical behaviour. J Electroanal Chem 29:A1–A5. https://doi.org/10.1016/0368-1874(71)85100-6

    Article  Google Scholar 

  41. Lodi G, Deasmundis C, Ardizzone S, Sivieri E, Trasatti S (1981) Resistivity and temperature-coefficient of resistivity of ruthenium oxide layers influence of morphology. Surf Technol 14:335–343. https://doi.org/10.1016/0376-4583(81)90039-x

    Article  CAS  Google Scholar 

  42. Trasatti S (1991) Physical electrochemistry of ceramic oxides. Electrochim Acta 36:225–241. https://doi.org/10.1016/0013-4686(91)85244-2

    Article  CAS  Google Scholar 

  43. Pietron JJ, Pomfret MB, Chervin CN, Long JW, Rolison DR (2012) Direct methanol oxidation at low overpotentials using Pt nanoparticles electrodeposited at ultrathin conductive RuO2 nanoskins. J Mater Chem 22:5197–5204. https://doi.org/10.1039/c2jm15553b

    Article  CAS  Google Scholar 

  44. Gu YJ, Wong WT (2006) Electro-oxidation of methanol on Pt particles dispersed on RuO2 nanorods. J Electrochem Soc 153:A1714–A1718. https://doi.org/10.1149/1.2217327

    Article  CAS  Google Scholar 

  45. Hajar YM, Patel KD, Tariq U, Baranova EA (2017) Functional equivalence of electrochemical promotion and metal support interaction for Pt and RuO2 nanoparticles. J Catal 352:42–51. https://doi.org/10.1016/j.jcat.2017.05.001

    Article  CAS  Google Scholar 

  46. Ciapina EG, dos Santos ML, Santos R, Palombarini J, Almeida Junior OP, Santana J, Modesto DA, Lanfredi AJC, Santos SF (2021) On the lattice dilation of palladium nanoparticles and a new methodology for the quantification of interstitials. J Alloy Compd 881:160628. https://doi.org/10.1016/j.jallcom.2021.160628

  47. Alexeyeva N, Tammeveski K, Lopez-Cudero A, Solla-Gullon J, Feliu JM (2010) Electroreduction of oxygen on Pt nanoparticle/carbon nanotube nanocomposites in acid and alkaline solutions. Electrochim Acta 55:794–803. https://doi.org/10.1016/j.electacta.2009.09.030

    Article  CAS  Google Scholar 

  48. Zeng JH, Lee JY, Zhou WJ (2006) Activities of Pt/C catalysts prepared by low temperature chemical reduction methods. Appl Catal A-Gen 308:99–104. https://doi.org/10.1016/j.apcata.2006.04.019

    Article  CAS  Google Scholar 

  49. Pasqualeti AM, Olu PY, Chatenet M, Lima FHB (2015) Borohydride electrooxidation on carbon-supported noble metal nanoparticles: insights into hydrogen and hydroxyborane formation. ACS Catal 5:2778–2787. https://doi.org/10.1021/acscatal.5b00107

    Article  CAS  Google Scholar 

  50. Ciapina EG, Viana LB, Santos R, Nogueira MSM, Almeida Junior OP, Nunes RS, Santos SF, Nakazato RZ (2018) Metal loading effects on carbon-supported Pd electrocatalysts. Int J Hydrogen Energ 43:17748–17752. https://doi.org/10.1016/j.ijhydene.2018.07.137

    Article  CAS  Google Scholar 

  51. Santos RMIS, Nakazato RZ, Ciapina EG (2021) The dual role of the surface oxophilicity in the electro-oxidation of ethanol on nanostructured Pd/C in alkaline media. J Electroanal Chem 894:115342. https://doi.org/10.1016/j.jelechem.2021.115342

  52. Kraus W, Nolze G (1996) POWDER CELL - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr 29:301–303. https://doi.org/10.1107/s0021889895014920

    Article  CAS  Google Scholar 

  53. Alencar MAS, Benedetti AV, Fugivara CS, Messaddeq Y (2010) Construction of an electrochemical cell to visualize samples in situ in stereomicroscope. Quim Nova 33:1394–1397. https://doi.org/10.1590/s0100-40422010000600031

    Article  CAS  Google Scholar 

  54. Lukaszewski M, Soszko M, Czerwinski A (2016) Electrochemical methods of real surface area determination of noble metal electrodes - an overview. Int J Electrochem Sci 11:4442–4469. https://doi.org/10.20964/2016.06.71

  55. Iwasita T, Nart FC (1997) In situ infrared spectroscopy at electrochemical interfaces. Prog Surf Sci 55:271–340. https://doi.org/10.1016/s0079-6816(97)00032-4

    Article  CAS  Google Scholar 

  56. Mitsuhashi T, Watanabe A, Balek V, Klosova E, Malek J, Subrt J, Stengl V (1999) In-situ monitoring of microstructure changes during the heating of amorphous ruthenia by means of emanation thermal analysis. Mater Lett 39:46–50. https://doi.org/10.1016/s0167-577x(98)00215-8

    Article  CAS  Google Scholar 

  57. Balek V, Mitsuhashi T, Zelenak V, Vecernikova E, Subrt J, Haneda H, Bezdicka P (2002) Emanation thermal analysis study of the preparation of ruthenia-titania-based finely dispersed powders. J Colloid Interf Sci 248:47–53. https://doi.org/10.1006/jcis.2001.8167

    Article  CAS  Google Scholar 

  58. McKeown DA, Hagans PL, Carette LPL, Russell AE, Swider KE, Rolison DR (1999) Structure of hydrous ruthenium oxides: implications for charge storage. J Phys Chem B 103:4825–4832. https://doi.org/10.1021/jp990096n

    Article  CAS  Google Scholar 

  59. Zheng JP, Cygan PJ, Jow TR (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142:2699–2703. https://doi.org/10.1149/1.2050077

    Article  CAS  Google Scholar 

  60. Boman CE (1970) Refinement of crystal structure of ruthenium dioxide. Acta Chem Scand 24:116–122. https://doi.org/10.3891/acta.chem.scand.24-0116

    Article  CAS  Google Scholar 

  61. Liu P, Muckerman JT, Adzic RR (2006) Adsorption of platinum on the stoichiometric RuO2(110) surface. J Chem Phys 124:141101. https://doi.org/10.1063/1.2189857

  62. Sun Q, Reuter K, Scheffler M (2004) Hydrogen adsorption on RuO2(110): density-functional calculations. Phys Rev B 70:235402. https://doi.org/10.1103/PhysRevB.70.235402

  63. McBreen J, Olender H, Srinivasan S, Kordesch KV (1981) Carbon supports for phosphoric acid fuel cell electrocatalysts: alternative materials and methods of evaluation. J Appl Electrochem 11:787–796. https://doi.org/10.1007/bf00615184

    Article  CAS  Google Scholar 

  64. Fletcher JM, Gardner WE, Greenfield BF, Holdoway MJ, Rand MH (1968) Magnetic and other studies of ruthenium dioxide and its hydrate. J Chem Soc A 653–657. https://doi.org/10.1039/j19680000653

  65. Rolison DR, Dunn B (2001) Electrically conductive oxide aerogels: new materials in electrochemistry. J Mater Chem 11:963–980. https://doi.org/10.1039/b007591o

    Article  CAS  Google Scholar 

  66. Pantea D, Darmstadt H, Kaliaguine S, Summchen L, Roy C (2001) Electrical conductivity of thermal carbon blacks - influence of surface chemistry. Carbon 39:1147–1158. https://doi.org/10.1016/s0008-6223(00)00239-6

    Article  CAS  Google Scholar 

  67. Sebastián D, Suelves I, Moliner R, Lázaro MJ (2010) The effect of the functionalization of carbon nanofibers on their electronic conductivity. Carbon 48:4421–4431. https://doi.org/10.1016/j.carbon.2010.07.059

    Article  CAS  Google Scholar 

  68. Tauster SJ (1987) Strong metal-support interactions Accounts Chem Res 20:389–394. https://doi.org/10.1021/ar00143a001

    Article  CAS  Google Scholar 

  69. Tauster SJ, Fung SC, Baker RTK, Horsley JA (1981) Strong-interactions in supported-metal catalysts. Science 211:1121–1125. https://doi.org/10.1126/science.211.4487.1121

    Article  CAS  PubMed  Google Scholar 

  70. Pan CJ, Tsai MC, Su WN, Rick J, Akalework NG, Agegnehu AK, Cheng SY, Hwang BJ (2017) Tuning/exploiting strong metal-support interaction (SMSI) in heterogeneous catalysis. J Taiwan Inst Chem Eng 74:154–186. https://doi.org/10.1016/j.jtice.2017.02.012

    Article  CAS  Google Scholar 

  71. Galizzioli D, Tantardini F, Trasatti S (1974) Ruthenium dioxide - new electrode material.1. Behavior in acid solutions of inert electrolytes. J Appl Electrochem 4:57–67. https://doi.org/10.1007/bf00615906

    Article  CAS  Google Scholar 

  72. Trasatti S, Lodi G (1980) In: Trasatti S (ed) Electrodes of conductive metallic oxides - Part A. Elsevier, New York

  73. Ardizzone S, Fregonara G, Trasatti S (1990) Inner and outer active surface of RuO2 electrodes. Electrochim Acta 35:263–267. https://doi.org/10.1016/0013-4686(90)85068-x

    Article  CAS  Google Scholar 

  74. Long JW, Swider KE, Merzbacher CI, Rolison DR (1999) Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: the nature of capacitance in nanostructured materials. Langmuir 15:780–785. https://doi.org/10.1021/la980785a

    Article  CAS  Google Scholar 

  75. Gallo IBC, Carbonio EA, Villullas HM (2018) What determines electrochemical surface processes on carbon supported PdAu nanoparticles? ACS Catal 8:1818–1827. https://doi.org/10.1021/acscatal.7b03734

    Article  CAS  Google Scholar 

  76. Fang ZY, Chen W (2021) Recent advances in formic acid electro-oxidation: from the fundamental mechanism to electrocatalysts. Nanoscale Adv 3:94–105. https://doi.org/10.1039/d0na00803f

    Article  CAS  PubMed  Google Scholar 

  77. Iwasita T, Xia XH, Herrero E, Liess HD (1996) Early stages during the oxidation of HCOOH on single-crystal Pt electrodes as characterized by infrared spectroscopy. Langmuir 12:4260–4265. https://doi.org/10.1021/la960264s

    Article  CAS  Google Scholar 

  78. Wang HF, Liu ZP (2009) Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation model. J Phys Chem C 113:17502–17508. https://doi.org/10.1021/jp9059888

    Article  CAS  Google Scholar 

  79. Ma HY, Wang GC, Morikawa Y, Nakamura J (2009) The relationship between formate adsorption energy and electronic properties: a first principles density functional theory study. Sci China Ser B-Chem 52:1427–1433. https://doi.org/10.1007/s11426-009-0221-x

    Article  CAS  Google Scholar 

  80. Wang JY, Zhang HX, Jiang K, Cai WB (2011) From HCOOH to CO at Pd electrodes: a surface-enhanced infrared spectroscopy study. J Am Chem Soc 133:14876–14879. https://doi.org/10.1021/ja205747j

    Article  CAS  PubMed  Google Scholar 

  81. Zhang HX, Wang SH, Jiang K, Andre T, Cai WB (2012) In situ spectroscopic investigation of CO accumulation and poisoning on Pd black surfaces in concentrated HCOOH. J Power Sources 199:165–169. https://doi.org/10.1016/j.jpowsour.2011.10.033

    Article  CAS  Google Scholar 

  82. Wang YY, Qj YY, Zhang DJ, Liu CB (2014) New insight into the decomposition mechanism of formic acid on Pd(111): competing formation of CO2 and CO. J Phys Chem C 118:2067–2076. https://doi.org/10.1021/jp410742p

    Article  CAS  Google Scholar 

  83. Vidal-Iglesias FJ, Aran-Ais RM, Solla-Gullon J, Garnier E, Herrero E, Aldaz A, Feliu JM (2012) Shape-dependent electrocatalysis: formic acid electrooxidation on cubic Pd nanoparticles. Phys Chem Chem Phys 14:10258–10265. https://doi.org/10.1039/c2cp40992e

    Article  CAS  PubMed  Google Scholar 

  84. Jiang K, Zhang HX, Zou SZ, Cai WB (2014) Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Phys Chem Chem Phys 16:20360–20376. https://doi.org/10.1039/c4cp03151b

    Article  CAS  PubMed  Google Scholar 

  85. Kleijn SEF, Lai SCS, Koper MTM, Unwin PR (2014) Electrochemistry of nanoparticles. Angew Chem Int Edit 53:3558–3586. https://doi.org/10.1002/anie.201306828

    Article  CAS  Google Scholar 

  86. Zhou WP, Lewera A, Larsen R, Masel RI, Bagus PS, Paul S, Wieckowski A (2006) J Phys Chem B 110:13393–13398. https://doi.org/10.1021/jp061690h

    Article  CAS  PubMed  Google Scholar 

  87. Guo JS, Chen RR, Zhu FH, Sun SG, Villullas HM (2018) New understandings of ethanol oxidation reaction mechanism on Pd/C and Pd2Ru/C catalysts in alkaline direct ethanol fuel cells. Appl Catal B-Environ 224:602–611. https://doi.org/10.1016/j.apcatb.2017.10.037

    Article  CAS  Google Scholar 

  88. Godoi DRM, Perez J, Villullas HM (2009) Effects of alloyed and oxide phases on methanol oxidation of Pt-Ru/C nanocatalysts of the same particle size. J Phys Chem C 113:8518–8525. https://doi.org/10.1021/jp8108804

  89. Herrero H, Feliu JM (2018) Understanding formic acid oxidation mechanism on platinum single crystal electrodes. Curr Opin Electrochem 9:145–150. https://doi.org/10.1016/j.coelec.2018.03.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are also due to Prof. Edson C. Botelho, Prof. Paulo A. Suzuki, and Dr. Maurício R. Baldan for access to TGA, DRX, and SEM measurements; to Prof. Cecílio S. Fugivara for access to video recording during experiments; to the Structural Characterization Laboratory (LCE) - UFSCar for access to TEM facility; and to Cabot (Brazil) for supplying XC-72R carbon.

Funding

We gratefully acknowledge the financial support by Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (476690/2013-7, 407143/2013-0), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2015/21816-4), and PROPe/UNESP. G.M.A. and J.P. acknowledge the scholarships granted by FAPESP (18/20780-4) and PROPe/UNESP, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hebe M. Villullas or Eduardo G. Ciapina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10008_2023_5524_MOESM1_ESM.pdf

Supplementary file1 Supplementary material containing X-ray diffraction pattern of the RuOxHy precursor, EDS spectrum of Pd/RuO2, cyclic voltammogram recorded for Pd/RuO2 in Ar-saturated 0.1 M formic acid in 0.5 M H2SO4 solution, and in situ FTIR spectra are provided. (PDF 591 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarenga, G.M., Palombarini, J., Gonçalves, R.A. et al. Formic acid oxidation on Pd/RuO2: does the RuO2 support enhance the electrocatalytic activity of Pd nanoparticles?. J Solid State Electrochem 27, 2465–2477 (2023). https://doi.org/10.1007/s10008-023-05524-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05524-8

Keywords

Navigation