Skip to main content
Log in

Electrocatalytic Properties of TiO2-Embedded Pt Nanoparticles in Oxidation of Methanol: Particle Size Effect and Proton Spillover Effect

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Size-controlled Pt nanoparticles embedded in TiO2 were prepared by simultaneous dual-gun sputtering from pure targets of Pt and TiO2. The mean diameter of the Pt nanoparticles, as confirmed by their transmission electron microscopic images, was varied from ∼2 to ∼4 nm by changing the RF power ratio of Pt and TiO2. The transmission electron diffraction and X-ray diffraction patterns of the Pt nanoparticles embedded in TiO2 confirmed that the Pt particles are polycrystalline, whereas the TiO2 matrix is amorphous. The electrocatalytic properties of Pt/TiO2 were strongly influenced by the particle size and the TiO2 support. The presence of the TiO2 support led to higher electronic density on Pt, changing its chemisorption properties, weakening the Pt–CO bonds, and increasing its CO oxidation activity. The high CO oxidation activity of the Pt nanoparticles embedded in TiO2 can be also attributed to the ability of TiO2 to provide highly reactive oxygen atoms. CO desorbed at higher onset potential with a decrease in the particle size, which is related to quantum-size effects in the Pt nanoparticles. The high activity of methanol oxidation on the Pt/TiO2 electrode resulted from the homogeneous dispersion and the miniaturization of Pt. In addition, we found that the enhanced catalytic activity in the Pt/TiO2 electrodes correlated to proton spillover phenomena in TiO2 and was measured by performing an in situ electrochromic test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E.S. Smotkin, T.E. Mallouk, Science 280, 1735 (1998)

    Article  CAS  Google Scholar 

  2. A. Wieckowski (ed.), Interfacial electrochemistry (Marcel-Dekker, New York, 1999)

    Google Scholar 

  3. M.P. Hearth, G.A. Hards, Platinum Met Rev 40, 150 (1996)

    Google Scholar 

  4. B. Gurau, R. Viswanathan, R. Liu, T.J. Lafrenz, K.L. Ley, E.S. Smotkin, E. Reddington, A. Sapienza, B.C. Chan, T.E. Mallouk, S. Sarangapani, J Phys Chem B 102, 9997 (1998)

    Article  CAS  Google Scholar 

  5. K.-W. Park, K.-S. Ahn, J.-H. Choi, Y.-C. Nah, Y.-M. Kim, Y.-E. Sung, Appl Phys Lett 81, 907 (2002)

    Article  CAS  Google Scholar 

  6. A. Hamnett, Cat Today 38, 445 (1997)

    Article  CAS  Google Scholar 

  7. Z.X. Liang, T.S. Zhao, J Phys Chem C 111, 8128 (2007)

    Article  CAS  Google Scholar 

  8. W. Mustain, H. Kim, S. Prakash, J. Stark, T. Osborn, P.A. Kohl, Electrochem Solid State Lett 10, B210 (2007)

    Article  CAS  Google Scholar 

  9. L. Xiong, A. Manthiram, Electrochim Acta 49, 4163 (2004)

    Article  CAS  Google Scholar 

  10. L. Yang, W. Yang, Q. Cai, J Phys Chem C 111, 16613 (2007)

    Article  CAS  Google Scholar 

  11. L. Jiang, G. Sun, Z. Zhou, S. Sun, Q. Wang, S. Yan, H. Li, J. Tian, J. Guo, B. Zhou, Q. Xin, J Phys Chem B 109, 8774 (2005)

    Article  CAS  Google Scholar 

  12. X.W. Yu, S.Y. Ye, J Power Sources 172, 145 (2007)

    Article  CAS  Google Scholar 

  13. M.S. Wilson, S. Goffesfeld, J Electrochem Soc 139, L28 (1992)

    Article  CAS  Google Scholar 

  14. Y.G. Chun, C.S. Kim, D.H. Peck, D.R. Shin, J Power Sources 71, 174 (1998)

    Article  CAS  Google Scholar 

  15. S.J. Yoo, Y.-H. Cho, H.-S. Park, J.K. Lee, Y.-E. Sung, J Power Source 178, 547 (2008)

    Article  CAS  Google Scholar 

  16. J.M. Chen, L.S. Sarma, C.H. Cehn, M.Y. Cheng, S.C. Shih, G.R. Wang, D.G. Liu, J.F. Lee, M.T. Tang, B.J. Hwang, J Power Sources 159, 29 (2006)

    Article  CAS  Google Scholar 

  17. M. Hepel, I. Kumarihamy, C. Zhong, J Electrochem Commun 8, 1439 (2006)

    Article  CAS  Google Scholar 

  18. B.S. Hobbs, A.C.C. Tseung, Nature 222, 556 (1969)

    Article  CAS  Google Scholar 

  19. A.C.C. Tseung, P.K. Shen, Catal Today 38, 439 (1997)

    Article  CAS  Google Scholar 

  20. J.M. Sinfelt, P.J. Lucchesi, J Am Chem Soc 85, 3365 (1963)

    Article  CAS  Google Scholar 

  21. S. Khoobiar, J Phys Chem 68, 411 (1964)

    Article  CAS  Google Scholar 

  22. C.G. Granqvist, Handbook of inorganic electrochromic materials (Elsevier, Amsterdam, 1995)

    Google Scholar 

  23. M.C. Bernard, A.H.L. Goff, W. Zeng, Electrochim Acta 44, 781 (1998)

    Article  CAS  Google Scholar 

  24. S.J. Yoo, J.W. Lim, Y.-E. Sung, Sol Energy Mater Sol Cells 90, 477 (2006)

    Article  CAS  Google Scholar 

  25. M. Pourbaix, in Atlas of electrochemical equilibria in aqueous solutions, ed. by J.A. Franklin (Pergamon, Oxford, 1966)

    Google Scholar 

  26. S.J. Tauster, S.C. Fung, R.L. Garten, J Am Chem Soc 100, 170 (1978)

    Article  CAS  Google Scholar 

  27. B.H. Chen, J.M. White, J Phys Chem 86, 3534 (1982)

    Article  CAS  Google Scholar 

  28. B.C. Beard, P.N. Ross, J Phys Chem 90, 6811 (1986)

    Article  CAS  Google Scholar 

  29. T. Braunschweig, U. Roland, H. Winkler, in Studies in surface science and catalysis 77, ed. by T. Inui, K. Fujimoto, T. Uchijima, M. Masai (Elsevier, Kyoto, 1993)

    Google Scholar 

  30. H. Haberland, M. Karrais, M. Mall, Y. Thurner, J Vac Sci Technol A 10, 3266 (1992)

    Article  CAS  Google Scholar 

  31. D.R. Short, A.N. Mansour, J.W. Cook Jr., D.E. Sayers, J.R. Katzer, J Catal 82, 299 (1983)

    Article  CAS  Google Scholar 

  32. H. Yoshitake, Y. Iwasawa, J Phys Chem 95, 7368 (1991)

    Article  CAS  Google Scholar 

  33. M.E. Herron, S.E. Doyle, S. Pizzini, K.J. Roberts, J. Robinson, G. Hards, F.C. Walsh, J Electroanal Chem 324, 243 (1992)

    Article  CAS  Google Scholar 

  34. S. Mukerjee, J. McBreen, J Electroanal Chem 448, 163 (1998)

    Article  CAS  Google Scholar 

  35. U. Diebold, J.-M. Pan, T.E. Madey, Phys Rev B 47, 3868 (1993)

    Article  CAS  Google Scholar 

  36. V. Di Castro, G. Polzonetti, R. Zanoni, Surf Sci 162, 348 (1985)

    Article  Google Scholar 

  37. M.G. Mason, Phys Rev B 27, 748 (1983)

    Article  CAS  Google Scholar 

  38. H.-P. Steinrück, F. Pesty, L. Zhang, T.E. Madey, Phys Rev B 51, 2427 (1995)

    Article  Google Scholar 

  39. A. Berkó, I. Ulrych, K.C. Prince, J Phys Chem B 102, 3379 (1998)

    Article  Google Scholar 

  40. W.F. Egelhoff Jr., Surf Sci Rep 6, 253 (1986)

    Article  CAS  Google Scholar 

  41. F. Pesty, H.-P. Steinrück, T.E. Madey, Surf Sci 339, 83 (1995)

    Article  CAS  Google Scholar 

  42. T. Engel, G. Ertl, Adv Catal 28, 2 (1979)

    Google Scholar 

  43. T. Frelink, W. Visscher, J.A.R. van Veen, J Electroanal Chem 382, 65 (1995)

    Article  Google Scholar 

  44. S. Park, Y. Tong, A. Wieckowski, M.J. Weaver, Langmuir 18, 3233 (2002)

    Article  CAS  Google Scholar 

  45. T. Vad, F. Hajbolouri, H.-G. Haubold, G.G. Scherer, A. Wokaun, J Phys Chem B 108, 12442 (2004)

    Article  CAS  Google Scholar 

  46. S.J. Yoo, J.W. Lim, Y.H. Jung, H.G. Choi, D.K. Kim, Y.-E. Sung, App Phys Lett 90, 173126 (2007)

    Article  Google Scholar 

  47. A. Azens, G. Vaivars, M. Vesezelei, L. Kullman, C.G. Granqvist, J Appl Phys 89, 7885 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Korean Ministry of Knowledge Economy through the Korea Institute of Energy Technology Evaluation and Planning under contract number 2008-N-FC08-P-01. This work was also supported by the Research Center for Energy Conversion & Storage and the WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science & Technology (R31-10013). Yong-Hun Cho acknowledges a financial support by Priority Research Centers Program through NRF funded by MEST (2009-0093814).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Eun Sung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, S.J., Lee, KS., Cho, YH. et al. Electrocatalytic Properties of TiO2-Embedded Pt Nanoparticles in Oxidation of Methanol: Particle Size Effect and Proton Spillover Effect. Electrocatal 2, 297–306 (2011). https://doi.org/10.1007/s12678-011-0066-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-011-0066-x

Keywords

Navigation