Skip to main content
Log in

Nano-TiNb2O7/CNTs composites with pseudocapacitive behavior for superior lithium-ion storage

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, nano-TiNb2O7/carbon nanotubes (nano-TNO/CNTs) composites were prepared by solvothermal process, ball-milling and subsequent high-temperature calcination. The effects of CNTs content on the microstructure and electrochemical performances of nano-TNO/CNTs composites were investigated. The results indicate nano-TNO/CNTs-20 composites exhibit superior high-rate and cycling performance. Their specific capacities at 0.1, 0.3, 0.5, 1.0 and 2.0 A·g−1 are 374, 351, 339, 320 and 300 mAh·g−1, respectively. Moreover, the capacity retention ratios are up to 94.7% and 82% after 500 and 770 cycles at 0.3 and 1.0 A·g−1, respectively. The excellent electrochemical performances should be attribute to the nanoscale TNO particles and conductive network formed by CNTs around nano-TNO particles in composites, enabling facile Li+ diffusion and electronic conductivity, and a significant pseudocapacitive contribution to the rate capability was also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang YH, Nie ZH, Du CQ, Zhang JW, Zhang JW (2023) Ultrahigh lithiation dynamics of Li4Ti5O12 as an anode material with open diffusion channels induced by chemical presodiation. Rare Met 42(2):471–483

    Article  CAS  Google Scholar 

  2. Jang I-S, Hui Kang S, Chan Kang Y, Roh KC, Chun J (2022) Facile synthesis of surface fluorinated-Li4Ti5O12/carbon nanotube nanocomposites for a high-rate capability anode of lithium-ion batteries. Appl Surf Sci 605:154710

    Article  CAS  Google Scholar 

  3. Qin W, Chen Y, An J, Wen X (2022) Self-supported Li4Ti5O12 nanobelt array anode with long-life and improved low-temperature performance for flexible lithium-ion batteries. Ceram Int 48:22153–22162

    Article  Google Scholar 

  4. Niu B, Zhao P, Zhou S, Li Q, Li Q, Wen L, Liu H, Liu G (2021) High-rate lithium storage of TiNb2O7/reduced graphene oxide. Ceram Int 47:1177–1183

    Article  CAS  Google Scholar 

  5. Han J-T, Huang Y-H, Goodenough JB (2011) New anode framework for rechargeable lithium batteries. Chem Mater 23:2027–2029

    Article  CAS  Google Scholar 

  6. Voskanyan AA, Jayanthi K, Navrotsky A (2022) Vacancy control in TiNb2O7: implications for energy applications. Chem Mater 34:10311–10319

    Article  CAS  Google Scholar 

  7. Liang D, Lu Y, Hu L, Wang L, Liang S, Liang X, Liu L, Xu Z, Han C, Liang C (2022) Mesoporous TiNb2O7 nanosheets anode with excellent rate capability and cycling performance in lithium ion half/full batteries. J Power Sources 544:231897

    Article  CAS  Google Scholar 

  8. Cheng L-Q, He Y, Chen K, Ma Z, Liu R, Liu N, Deng Y (2022) Facile fabrication of a high performance TiNb2O7 anode for large-scale electrical energy storage. J Mater Chem A 10:17586–17592

    Article  CAS  Google Scholar 

  9. Han X, Meng Q, Wan X, Sun B, Zhang Y, Shen B, Gao J, Ma Y, Zuo P, Lou S, Yin G (2021) Intercalation pseudocapacitive electrochemistry of Nb-based oxides for fast charging of lithium-ion batteries. Nano Energy 81:105635

    Article  CAS  Google Scholar 

  10. Zhao Z, Xue Z, Xiong Q, Zhang Y, Hu X, Chi H, Qin H, Yuan Y, Ni H (2021) Titanium niobium oxides (TiNb2O7): design, fabrication and application in energy storage devices. Sustain Mater Technolo 30:e00357

    CAS  Google Scholar 

  11. Aghamohammadi H, Hassanzadeh N, Eslami-Farsani R (2022) A comprehensive review study on pure titanium niobium oxide as the anode material for Li-ion batteries. J Alloys Compd 911:165117

    Article  CAS  Google Scholar 

  12. Wu Y, Liu D, Qu D, Li J, Xie Z, Zhang X, Chen H, Tang H (2022) Porous oxygen-deficient TiNb2O7 spheres wrapped by MXene as high-rate and durable anodes for liquid and all-solid-state lithium-ion batteries. Chem Eng J 438:135328

    Article  CAS  Google Scholar 

  13. Qian R, Lu H, Yao T, Xiao F, Shi J-W, Cheng Y, Wang H (2022) Hollow TiNb2O7 nanospheres with a carbon coating as high-efficiency anode materials for lithium-ion batteries. ACS Sustain Chem Eng 10:61–70

    Article  CAS  Google Scholar 

  14. Zhong XB, Huang TT, Liang JF, Li SX, Zhang HH, Liu GY, Wang GM (2021) Porous TiNb2O7@N-C as anode materials for lithium-ion batteries with ultrahigh-rate performance. J Phys Chem C 125:23960–23967

    Article  CAS  Google Scholar 

  15. Qian RF, Yang CF, Ma DW, Li KM, Feng T, Feng JJ, Pan JH (2021) Robust lithium storage of block copolymer-templated mesoporous TiNb2O7 and TiNb2O7@C anodes evaluated in half-cell and full-battery configurations. Electrochim Acta 379:138179

    Article  CAS  Google Scholar 

  16. Lou S, Cheng X, Zhao Y, Lushington A, Gao J, Li Q, Zuo P, Wang B, Gao Y, Ma Y, Du C, Yin G, Sun X (2017) Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy 34:15–25

    Article  CAS  Google Scholar 

  17. Lei CR, Huang SY, Qin X, Guo ZX, Wei TY, Zhang YZ (2022) Reduced graphene oxide/glucose co-assisted micro titanium niobium oxide hybrid anodes for lithium-ion batteries. ChemElectroChem 9:e202200495

    Article  CAS  Google Scholar 

  18. Liu WW, Liu J, Zhu MH, Wang WY, Sun YM (2021) Closely compacted TiNb2O7-C assembly for fast-charging battery anodes. ACS Appl Energy Mater 4:12319–12325

    Article  CAS  Google Scholar 

  19. She LN, Zhang F, Jia CY, Kang LP, Li Q, He XX, Sun J, Lei ZB, Liu ZH (2021) Ultrahigh-energy sodium ion capacitors enabled by the enhanced intercalation pseudocapacitance of self-standing Ti2Nb2O9/CNF anodes. Nanoscale 13:15781–15788

    Article  CAS  PubMed  Google Scholar 

  20. Zhou JQ, Dong HY, Chen Y, Ye YH, Xiao L, Deng BH, Liu JP (2021) Carbon-coated TiNb2O7 nanosheet arrays as self-supported high mass-loading anodes for flexible Li-ion batteries. Chem Commun 57:1822–1825

    Article  CAS  Google Scholar 

  21. Aghamohammadi H, Eslami-Farsani R (2022) Synthesis and electrochemical performance of TiNb2O7 nanoparticles grown on electrochemically prepared graphene as anode materials for Li-ion batteries. J Power Sources 535:231418

    Article  CAS  Google Scholar 

  22. Huang ZY, Li Z, Zhu M, Wang GY, Yu FF, Wu MH, Xu G, Dou SX, Liu HK, Wu C (2021) Highly stable lithium/sodium metal batteries with high utilization enabled by a holey two-dimensional n-doped TiNb2O7 host. Nano Lett 21:10453–10461

    Article  CAS  PubMed  Google Scholar 

  23. Paulraj V, Saha T, Vediappan K, Bharathi KK (2021) Synthesis and electrochemical properties of TiNb2O7 nanoparticles as an anode material for lithium ion batteries. Mater Lett 304:130681

    Article  CAS  Google Scholar 

  24. Li H, Shen L, Pang G, Fang S, Luo H, Yang K, Zhang X (2015) TiNb2O7 nanoparticles assembled into hierarchical microspheres as high-rate capability and long-cycle-life anode materials for lithium ion batteries. Nanoscale 7:619–624

    Article  CAS  PubMed  Google Scholar 

  25. Luo J, Peng J, Zeng P, Wu Z, Li J, Li W, Huang Y, Chang B, Wang X (2020) TiNb2O7 nano-particle decorated carbon cloth as flexible self-support anode material in lithium-ion batteries. Electrochim Acta 332:135469

    Article  CAS  Google Scholar 

  26. Bak S-e, Chung W, Abbas MA, Bang JH (2022) Evidence of intrinsic pseudocapacitive lithium intercalation in rutile TiNbO4. ACS Appl Energy Mater 5:5508–5512

    Article  CAS  Google Scholar 

  27. Oskouei HI, Aghamohammadi H, Eslami-Farsani R (2022) Electrochemical performance of TiNb2O7 nanoparticles anchored with different contents of MWCNTs as anode materials for Li-ion batteries. Ceram Int 48:14717–14725

    Article  CAS  Google Scholar 

  28. Zhu GZ, Jiao WL, Li Q, Zhao YH, Liu XH, Che RC (2022) Conductivity optimization via intertwined CNTs between TiNb2O7@C microspheres for a superior performance Li-ion battery anode. J Colloid Interface Sci 607:1103–1108

    Article  CAS  PubMed  Google Scholar 

  29. Lin CF, Hu L, Cheng CB, Sun K, Guo XK, Shao Q, Li JB, Wang N, Guo ZH (2018) Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim Acta 260:65–72

    Article  CAS  Google Scholar 

  30. Kim H, Lee Y, Byun D, Choi W (2020) TiNb2O7 microsphere anchored by polydopamine-modified graphene oxide as a superior anode material in lithium-ion batteries. Int J Energ Res 44:4986–4996

    Article  CAS  Google Scholar 

  31. Yang Y, Huang JX, Cao ZM, Lv ZH, Wu DZ, Wen ZP, Meng WW, Zeng J, Li CC, Zhao JB (2022) Synchronous manipulation of ion and electron transfer in Wadsley-Roth phase Ti-Nb oxides for fast-charging lithium-ion batteries. Adv Sci 9:2104530

    Article  CAS  Google Scholar 

  32. Ghiyasiyan-Arani M, Salavati-Niasari M (2022) Comparative study on electrochemical hydrogen storage of nanocomposites based on S or N doped graphene quantum dots and nanostructured titanium niobate. J Alloys Compd 899:163379

    Article  CAS  Google Scholar 

  33. Zhao S, Ding H, Chen J, Yang C, Xian X (2021) Facile synthesis of CNTs@TiO2 composites by solvothermal reaction for high-rate and long-life lithium-ion batteries. J Phys Chem Solids 152:109950

    Article  CAS  Google Scholar 

  34. Huang W, Zhao S, Wang J, Xian X (2022) Fabrication of Si/TiC–SiC/C composites as high-performance anode materials for Li-ion batteries. J Phys Chem Solids 171:111019

    Article  CAS  Google Scholar 

  35. Zhao S, Zhang M, Wang Z, Xian X (2018) Enhanced high-rate performance of Li4Ti5O12 microspheres/multiwalled carbon nanotubes composites prepared by electrostatic self-assembly. Electrochim Acta 276:73–80

    Article  CAS  Google Scholar 

  36. Li Y, Wang Y, Cai R, Yu C, Zhang J, Wu J, Tiwary CS, Cui J, Zhang Y, Wu Y (2022) Pseudocapacitive TiNb2O7/reduced graphene oxide nanocomposite for high-rate lithium ion hybrid capacitors. J Colloid Interface Sci 610:385–394

    Article  CAS  PubMed  Google Scholar 

  37. Kuo C-K, Lin M-C, Liu W-R (2023) Effects of oxygen vacancy concentration and sintering temperature on rechargeable Li-ion storage performance of titanium niobate anode materials. Ceram Int 49:7057–7065

    Article  CAS  Google Scholar 

  38. Daramalla V, Penki TR, Munichandraiah N, Krupanidhi SB (2016) Fabrication of TiNb2O7 thin film electrodes for Li-ion micro-batteries by pulsed laser deposition. Mater Sci Eng B 213:90–97

    Article  CAS  Google Scholar 

  39. Wang G, Ni J, Wang H, Gao L (2013) High-performance CNT-wired MoO3 nanobelts for Li-storage application. J Mater Chem A 1:4112–4118

    Article  CAS  Google Scholar 

  40. Zhao S, Zhang MM, Xian XC, Ka O, Wang ZH, Wang J (2017) Insight into the formation mechanism of Li4Ti5O12 microspheres obtained by a CTAB-assisted synthetic method and their electrochemical performances. J Mater Chem A 5:13740–13747

    Article  CAS  Google Scholar 

  41. Zhao S, Zhang M, Xian X (2021) Si/CNTs@melamine-formaldehyde resin-based carbon composites and its improved energy storage performances. J Appl Polym Sci 138:49688

    Article  CAS  Google Scholar 

  42. Zhu X, Xu J, Luo Y, Fu Q, Liang G, Luo L, Chen Y, Lin C, Zhao XS (2019) MoNb12O33 as a new anode material for high-capacity, safe, rapid and durable Li+ storage: structural characteristics, electrochemical properties and working mechanisms. J Mater Chem A 7:6522–6532

    Article  CAS  Google Scholar 

  43. Zeng J, Yang L, Shao R, Zhou L, Utetiwabo W, Wang S, Chen R, Yang W (2021) Mesoscopic Ti2Nb10O29 cages comprised of nanorod units as high-rate lithium-ion battery anode. J Colloid Interface Sci 600:111–117

    Article  CAS  PubMed  Google Scholar 

  44. Wang MT, Zhang JY, Wang YX, Lu YF (2022) Material and structural design of microsupercapacitors. J Solid State Electrochem 26:313–334

    Article  CAS  Google Scholar 

  45. Liu G-Y, Zhao Y-Y, Tang Y-F, Liu X-D, Liu M, Wu P-J (2020) In situ sol–gel synthesis of Ti2Nb10O29/C nanoparticles with enhanced pseudocapacitive contribution for a high-rate lithium-ion battery. Rare Met 39:1063–1071

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by General projects of Chongqing Natural Science Foundation [NO. cstc2020jcyj-msxmX0136; cstc2021jcyj-msxmX0777] and the Fundamental Research Funds for the Central Universities [NO. 2021CDJQY-048].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuo Zhao or Xiaochao Xian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1802 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Lei, L., Zhao, S. et al. Nano-TiNb2O7/CNTs composites with pseudocapacitive behavior for superior lithium-ion storage. J Solid State Electrochem 27, 2365–2374 (2023). https://doi.org/10.1007/s10008-023-05511-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05511-z

Keywords

Navigation