Skip to main content
Log in

Facile preparation of the silicon/carbon composite anodes from photovoltaic industry waste for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Silicon is identified as the most prospective anodes candidate material for lithium-ion batteries (LIBs). However, its commercialization is restricted by the large volume variation and high-cost. In this study, the silicon powders from the kerf slurry wastes are used as raw materials for the preparation of silicon/carbon anodes. An effective pretreatment process that combines the sand milling and a chemical cleaning method is utilized to prepare the purified silicon powders. Then, a facile one-step hydrothermal method is used to prepare the purified silicon/carbon composites. The results demonstrate that the chemical purification can effectively remove the organic contaminants and metal impurities on the surface of raw silicon powders. It also renders hydrophilic surfaces for the silicon powders, which improves the bonding of carbon layer and results in the improvement of the electrical performance correspondingly. The as-prepared purified silicon/carbon anode shows a high specific discharge capacity of 2099 mAh g−1 in the first cycle at the current density of 0.2 A g−1. The capacity still maintains a value of 1010 mAh g−1 after 148 cycles at the current density of 0.5 A g−1. This work not only provides a reasonable and facile solution for recycling silicon wastes from the kerf slurry but also provides a strategy for the preparation of advanced anodes for high-performance lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors will supply the relevant data in response to reasonable requests.

References

  1. Su X, Wu QL, Li JC, Xiao XC, Lott A, Lu WQ, Sheldon BW, Wu J (2014) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater 4:1300882

    Article  Google Scholar 

  2. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  CAS  PubMed  Google Scholar 

  3. Casimir A, Zhang H, Ogoke O, Amine JC, Lu J, Wu G (2016) Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation. Nano Energy 27:359–376

    Article  CAS  Google Scholar 

  4. Feng K, Li M, Liu WW, Kashkooli AG, Xiao XC, Cai M, Chen ZW (2018) Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14:1702737

    Article  Google Scholar 

  5. Wang CY, Liu T, Yang XG, Ge SH, Stanley NV, Rountree ES, Leng YJ, McCarthy BD (2022) Fast charging of energy-dense lithium-ion batteries. Nature 611:485–490

    Article  CAS  PubMed  Google Scholar 

  6. Zuo XX, Zhu J, Muller-Buschbaum P, Cheng YJ (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143

    Article  CAS  Google Scholar 

  7. Sun L, Liu YX, Shao R, Wu J, Jiang RY, Jin Z (2022) Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Mater 46:482–502

    Article  Google Scholar 

  8. Li M, Lu J, Chen ZW, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561

    Article  Google Scholar 

  9. Min XQ, Xu GJ, Xie B, Guan P, Sun ML, Cui GL (2022) Challenges of prelithiation strategies for next generation high energy lithium-ion batteries. Energy Storage Mater 47:297–318

    Article  Google Scholar 

  10. Wang HW, Fu JZ, Wang C, Wang JY, Yang AK, Li CC, Sun QF, Cui Y, Li HQ (2020) A binder-free high silicon content flexible anode for Li-ion batteries. Energ Environ Sci 13:848–858

    Article  CAS  Google Scholar 

  11. Tang J, Wu FZ, Dai XY, Zhou JW, Pang HX, Duan XY, Xiao B, Li DJ, Long JL (2023) Robust mxene adding enables the stable interface of silicon anodes for high-performance Li-ion batteries. Chem Eng J 452:139139

    Article  CAS  Google Scholar 

  12. Niu PH, Zhou Y, Li ZH, Xiao YY, Su MR, Zhou S, Hou XC, Liu YJ (2023) Synergetic design of a coralline-like Si/Ni/C anode material with microstructure and gradient interface for lithium-ion batteries. J Alloy Compd 933:167785

    Article  CAS  Google Scholar 

  13. Yan JJ, Gao CW, Qi SB, Jiang ZJ, Jensen LR, Zhan HB, Zhang YF, Yue YZ (2022) Encapsulation of nano-Si into MOF glass to enhance lithium-ion battery anode performances. Nano Energy 103:107779

    Article  CAS  Google Scholar 

  14. Wang QY, Zhu M, Chen GR, Dudko N, Li Y, Liu HJ, Shi LY, Wu G, Zhang DS (2022) High-performance microsized Si anodes for lithium-ion batteries: insights into the polymer configuration conversion mechanism. Adv Mater 34:219658

    Google Scholar 

  15. Tan W, Wang LN, Lu ZG, Yang F, Xu ZH (2022) A hierarchical Si/C nanocomposite of stable conductive network formed through thermal phase separation of asphaltenes for high-performance Li-ion batteries. Small 18:2203102

    Article  CAS  Google Scholar 

  16. Peng J, Li WW, Wu ZY, Li H, Zeng P, Chen GR, Chang BB, Zhang XY, Wang XY (2022) Si/C composite embedded nano-Si in 3D porous carbon matrix and enwound by conductive CNTs as anode of lithium-ion batteries. Sustain Mater Techno 32:e00410

    CAS  Google Scholar 

  17. Mu TS, Sun YP, Wang CH, Zhao Y, Doyle-Davis K, Liang JN, Sui XL, Li RY, Du CY, Zuo PJ, Yin GP, Sun XL (2022) Long-life silicon anodes by conformal molecular-deposited polyurea interface for lithium ion batteries. Nano Energy 103:107829

    Article  CAS  Google Scholar 

  18. Bi XY, Tang TY, Shi XW, Ge XH, Wu WW, Zhang ZY, Wang J (2022) One-step synthesis of multi-core-void@shell structured silicon anode for high-performance lithium-ion batteries. Small 18:2200796

    Article  CAS  Google Scholar 

  19. An YL, Tian Y, Liu CK, Xiong SL, Feng JK, Qian YT (2022) One-step, vacuum-assisted construction of micrometer-sized nanoporous silicon confined by uniform two-dimensional N-doped carbon toward advanced Li-ion and mxene-based Li metal batteries. ACS Nano 16:4560–4577

    Article  CAS  PubMed  Google Scholar 

  20. Zhou GM, Xu L, Hu GW, Mai LQ, Cui Y (2019) Nanowires for electrochemical energy storage. Chem Rev 119:11042–11109

    Article  CAS  PubMed  Google Scholar 

  21. Yu ZL, Fang S, Wang N, Shi BM, Hu YC, Shi ZX, Shi D, Yang JY (2020) In-situ growth of silicon nanowires on graphite by molten salt electrolysis for high performance lithium-ion batteries. Mater Lett 273:127946

    Article  CAS  Google Scholar 

  22. Yao Y, McDowell MT, Ryu I, Wu H, Liu NA, Hu LB, Nix WD, Cui Y (2011) Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett 11:2949–2954

    Article  CAS  PubMed  Google Scholar 

  23. Wang K, Pei SE, He ZS, Huang LA, Zhu SS, Guo JF, Shao HB, Wang JM (2019) Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes. Chem Eng J 356:272–281

    Article  CAS  Google Scholar 

  24. Shi WY, Wu HB, Baucom J, Li XY, Ma SX, Chen G, Lu YF (2020) Covalently bonded Si-polymer nanocomposites enabled by mechanochemical synthesis as durable anode materials. ACS Appl Mater Interfaces 12:39127–39134

    Article  CAS  PubMed  Google Scholar 

  25. Shin HJ, Hwang JY, Kwon HJ, Kwak WJ, Kim SO, Kim HS, Jung HG (2020) Sustainable encapsulation strategy of silicon nanoparticles in microcarbon sphere for high-performance lithium-ion battery anode. ACS Sustainable Chem Eng 8:14150–14158

    Article  CAS  Google Scholar 

  26. Liu YY, Sun MH, Yuan YF, Wu Q, Wang HX, He Y, Lin Z, Zhou FL, Ling M, Qian C, Liang CD, Lu J (2020) Accommodation of silicon in an interconnected copper network for robust Li-ion storage. Adv Funct Mater 30:1910249

    Article  CAS  Google Scholar 

  27. Kwon HJ, Hwang JY, Shin HJ, Jeong MG, Chung KY, Sun YK, Jung HG (2020) Nano/microstructured silicon-carbon hybrid composite particles fabricated with corn starch biowaste as anode materials for Li-ion batteries. Nano Lett 20:625–635

    Article  CAS  PubMed  Google Scholar 

  28. Chen MY, Duan PX, Zhong YJ, Wu ZG, Zhang ZY, Wang Y, Guo XD, Wang XL (2022) Constructing a sheet-stacked Si/C composite by recycling photovoltaic Si waste for Li-ion batteries. Ind Eng Chem Res 61:2809–2816

    Article  CAS  Google Scholar 

  29. Zhang Y, Cheng YQ, Song JH, Zhang YJ, Shi Q, Wang JX, Tian FH, Yuan S, Su Z, Zhou C, Wang Y, Yang S (2021) Functionalization-assistant ball milling towards Si/graphene anodes in high performance Li-ion batteries. Carbon 181:300–309

    Article  CAS  Google Scholar 

  30. Nzabahimana J, Liu ZF, Guo ST, Wang LB, Hu XL (2020) Top-down synthesis of silicon/carbon composite anode materials for lithium-ion batteries: mechanical milling and etching. Chemsuschem 13:1923–1946

    Article  CAS  PubMed  Google Scholar 

  31. Thomassen G, Dewulf J, Van Passel S (2022) Prospective material and substance flow analysis of the end-of-life phase of crystalline silicon-based PV modules. Resour Conserv Recy 176:1300882

    Article  Google Scholar 

  32. Wang K, Xue B, Tan Y, Sun JM, Li QL, Shi S, Li PT (2019) Recycling of micron-sized Si powder waste from diamond wire cutting and its application in Li-ion battery anodes. J Clean Prod 239:117997

    Article  CAS  Google Scholar 

  33. Xi FS, Zhang Z, Hu YX, Li SY, Ma WH, Chen XH, Wan XH, Chong C, Luo B, Wang LZ (2021) PSi@SiOx/nano-Ag composite derived from silicon cutting waste as high-performance anode material for Li-ion batteries. J Hazard Mater 414:125480

    Article  CAS  PubMed  Google Scholar 

  34. Ma YC, Huang AM, Li Y, Jiang HC, Zhang W, Zhang L, Li LL, Peng SJ (2022) Simple preparation of Si/N-doped carbon anodes from photovoltaic industry waste for lithium-ion batteries. J Alloy Compd 890:161792

    Article  CAS  Google Scholar 

  35. Fan ZQ, Wang YT, Zheng SS, Xu K, Wu JY, Chen S, Liang JH, Shi AD, Wang ZL (2021) A submicron Si@C core-shell intertwined with carbon nanowires and graphene nanosheet as a high-performance anode material for lithium ion battery. Energy Storage Mater 39:1–10

    Article  CAS  Google Scholar 

  36. King SW, Nemanich RJ, Davis RF (1999) Wet chemical processing of (0001) (Si) 6H-SiC hydrophobic and hydrophilic surfaces. J Electrochem Soc 146:1910–1917

    Article  CAS  Google Scholar 

  37. Zhang JK, Li SY, Xi FS, Wan XH, Ding Z, Chen ZJ, Ma WH, Deng R (2022) Si@SiOx/Ag composite anodes with high initial Coulombic efficiency derive from recyclable silicon cutting waste. Chem Eng J 447:137563

    Article  CAS  Google Scholar 

  38. Wu H, Yu GH, Pan LJ, Liu NA, McDowell MT, Bao ZA, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943–1948

    Article  PubMed  Google Scholar 

  39. Song K, Guan JQ, Wang ZQ, Xu C, Kan QB (2009) Post-treatment of mesoporous material with high temperature for synthesis super-microporous materials with enhanced hydrothermal stability. Appl Surf Sci 255:5843–5846

    Article  CAS  Google Scholar 

  40. Sun X, Li Y (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Edit 43:597–601

    Article  Google Scholar 

  41. Liu GP, Wang N, Qi FY, Lu XY, Liang YH, Sun ZP (2023) Novel Ni-Ge-P anodes for lithium-ion batteries with enhanced reversibility and reduced redox potential. Inorg Chem Front 10:699–711

    Article  CAS  Google Scholar 

  42. Liu GP, Yang Y, Lu XY, Qi FY, Liang YH, Trukhanov A, Wu YX, Sun ZP, Lu X (2022) Fully active bimetallic phosphide Zn0.5Ge0.5P: a novel high-performance anode for Na-ion batteries coupled with diglyme-based electrolyte. ACS Appl Mater Interfaces 14:31803–31813

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by Changzhou Shichuang Energy Co. Ltd. and National Natural Science Foundation of China (Grant no. 50902116).

Author information

Authors and Affiliations

Authors

Contributions

Tiancheng Shen: Investigation, drawing and writing - original draft preparation. Zhiwen Yang: Data analysis. Yuanzhi Chen: Writing - review and editing, supervision. Jie Mei: Investigation. Jin Xu: Conceptualization, project administration, supervision.

Corresponding authors

Correspondence to Yuanzhi Chen or Jin Xu.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 723 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, T., Yang, Z., Chen, Y. et al. Facile preparation of the silicon/carbon composite anodes from photovoltaic industry waste for lithium-ion batteries. J Solid State Electrochem 27, 2407–2417 (2023). https://doi.org/10.1007/s10008-023-05487-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05487-w

Keywords

Navigation