Skip to main content
Log in

Facile preparation of tetrafluoro-substituted cobalt phthalocyanine nanorods attached on carbon nanotubes for efficient electrocatalytic CO2 reduction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A tetrafluoro substituted CoPc (CoF4Pc), which is well dispersed in N,N-dimethylformamide (DMF), was used to modify carbon nanotubes (CNTs) via a facile sonication method, resulting in CoF4Pc nanorods with the length lower than 30 nm on the CNT surface. The as-fabricated CoF4Pc-CNT composites showed superior CO2RR catalytic activity compared with that of individual CoF4Pc, due to enhanced mass transfer and electrical conductivity arising from the CNT substrate. The CoF4Pc-CNT composite with the CoF4Pc/CNT weight ratio of 2:30 exhibited the highest CO current density of 29.0 mA cm−2 and CO selectivity of 91.8% at − 0.85 V vs. reversible hydrogen electrode (RHE) in a flow cell setup containing 0.5 M KHCO3, which was ascribed to enhanced charge transfer induced by highly dispersion of CoF4Pc nanorods, and good conductivity of CNT substrates. The work provides new insights for developing low-cost, effective, phthalocyanine-based catalysts for electrochemical CO2RR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choi J, Wagner P, Jalili R et al (2018) A porphyrin/graphene framework: a highly efficient and robust electrocatalyst for carbon dioxide reduction. Adv Energy Mater 8:1801280. https://doi.org/10.1002/aenm.201801280

    Article  CAS  Google Scholar 

  2. Zhang X, Wu Z, Zhang X et al (2017) Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat Commun 8:14675. https://doi.org/10.1038/ncomms14675

    Article  PubMed  PubMed Central  Google Scholar 

  3. Han N, Wang Y, Ma L et al (2017) Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 3:652–664. https://doi.org/10.1016/j.chempr.2017.08.002

    Article  CAS  Google Scholar 

  4. Pan F, Yang Y (2020) Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ Sci 13:2275–2309. https://doi.org/10.1039/D0EE00900H

    Article  CAS  Google Scholar 

  5. Sun L, Reddu V, Fisher AC, Wang X (2020) Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts. Energy Environ Sci 13:374–403. https://doi.org/10.1039/C9EE03660A

    Article  CAS  Google Scholar 

  6. Asadi M, Kim K, Liu C et al (2016) Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353:467–470. https://doi.org/10.1126/science.aaf4767

    Article  CAS  PubMed  Google Scholar 

  7. Xu H, Cai H, Cui L et al (2022) Molecular modulating of cobalt phthalocyanines on aminofunctionalized carbon nanotubes for enhanced electrocatalytic CO2 conversion. Nano Res. https://doi.org/10.1007/s12274-022-4578-x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen Y, Li CW, Kanan MW (2012) Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J Am Chem Soc 134:19969–19972. https://doi.org/10.1021/ja309317u

    Article  CAS  PubMed  Google Scholar 

  9. Liu M, Pang Y, Zhang B et al (2016) Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537:382–386. https://doi.org/10.1038/nature19060

    Article  CAS  PubMed  Google Scholar 

  10. Li CW, Kanan MW (2012) CO2 Reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134:7231–7234. https://doi.org/10.1021/ja3010978

    Article  CAS  PubMed  Google Scholar 

  11. Wu Y, Jiang Z, Lu X et al (2019) Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575:639–642. https://doi.org/10.1038/s41586-019-1760-8

    Article  CAS  PubMed  Google Scholar 

  12. Zhang X, Wang Y, Gu M et al (2020) Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat Energy 5:684–692. https://doi.org/10.1038/s41560-020-0667-9

    Article  CAS  Google Scholar 

  13. Lin S, Diercks CS, Zhang Y-B et al (2015) Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349:1208–1213. https://doi.org/10.1126/science.aac8343

    Article  CAS  PubMed  Google Scholar 

  14. Gu H, Zhong L, Shi G et al (2021) Graphdiyne/graphene heterostructure: a universal 2D scaffold anchoring monodispersed transition-metal phthalocyanines for selective and durable CO2 electroreduction. J Am Chem Soc 143:8679–8688. https://doi.org/10.1021/jacs.1c02326

    Article  CAS  PubMed  Google Scholar 

  15. Choi J, Wagner P, Gambhir S et al (2019) Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical cO2 reduction to CO. ACS Energy Lett 4:666–672. https://doi.org/10.1021/acsenergylett.8b02355

    Article  CAS  Google Scholar 

  16. Teimuri-Mofrad R, Hadi R, Abbasi H et al (2019) Green synthesis of carbon nanotubes@tetraferrocenylporphyrin/copper nanohybrid and evaluation of its ability as a supercapacitor. J Organomet Chem 899:120915. https://doi.org/10.1016/j.jorganchem.2019.120915

    Article  CAS  Google Scholar 

  17. Meshitsuka S, Ichikawa M, Tamaru K (1974) Electrocatalysis by metal phthalocyanines in the reduction of carbon dioxide. J Chem Soc Chem Commun. https://doi.org/10.1039/C39740000158

    Article  Google Scholar 

  18. Yue Z, Ou C, Ding N et al (2020) Advances in metal phthalocyanine based carbon composites for electrocatalytic CO2 reduction. ChemCatChem 12:6103–6130. https://doi.org/10.1002/cctc.202001126

    Article  CAS  Google Scholar 

  19. Yang S, Yu Y, Gao X et al (2021) Recent advances in electrocatalysis with phthalocyanines. Chem Soc Rev 50:12985–13011. https://doi.org/10.1039/d0cs01605e

    Article  CAS  PubMed  Google Scholar 

  20. Morlanés N, Joya KS, Takanabe K, Rodionov V (2015) Perfluorinated cobalt phthalocyanine effectively catalyzes water electrooxidation. Eur J Inorg Chem 2015:49–52. https://doi.org/10.1002/ejic.201403015

    Article  CAS  Google Scholar 

  21. Sorokin AB (2013) Phthalocyanine metal complexes in catalysis. Chem Rev 113:8152–8191. https://doi.org/10.1021/cr4000072

    Article  CAS  PubMed  Google Scholar 

  22. Wu Y, Liang Y, Wang H (2021) Heterogeneous molecular catalysts of metal phthalocyanines for electrochemical CO2 reduction reactions. Acc Chem Res 54:3149–3159. https://doi.org/10.1021/acs.accounts.1c00200

    Article  CAS  Google Scholar 

  23. Morlanés N, Takanabe K, Rodionov V (2016) Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst. ACS Catal 6:3092–3095. https://doi.org/10.1021/acscatal.6b00543

    Article  CAS  Google Scholar 

  24. Zhu M, Chen J, Guo R et al (2019) Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO2 electroreduction. Appl Catal B Environ 251:112–118. https://doi.org/10.1016/j.apcatb.2019.03.047

    Article  CAS  Google Scholar 

  25. Xu F, Zhang L, Ding X et al (2019) Selective electroreduction of dinitrogen to ammonia on a molecular iron phthalocyanine/O-MWCNT catalyst under ambient conditions. Chem Commun 55:14111–14114. https://doi.org/10.1039/C9CC06574A

    Article  CAS  Google Scholar 

  26. Jouny M, Luc W, Jiao F (2018) High-rate electroreduction of carbon monoxide to multi-carbon products. Nat Catal 1:748–755. https://doi.org/10.1038/s41929-018-0133-2

    Article  CAS  Google Scholar 

  27. Mukherjee M, Ghorai UK, Samanta M et al (2017) Graphene wrapped copper phthalocyanine nanotube: enhanced photocatalytic activity for industrial waste water treatment. Appl Surf Sci 418:156–162. https://doi.org/10.1016/j.apsusc.2017.01.222

    Article  CAS  Google Scholar 

  28. Li M, Yan C, Ramachandran R et al (2022) Non-peripheral octamethyl-substituted cobalt phthalocyanine nanorods supported on N-doped reduced graphene oxide achieve efficient electrocatalytic CO2 reduction to CO. Chem Eng J 430:133050. https://doi.org/10.1016/j.cej.2021.133050

    Article  CAS  Google Scholar 

  29. Li M, Ramachandran R, Wang Y et al (2021) Boosting the capacitive performance of cobalt(II) phthalocyanine by non-peripheral octamethyl substitution for supercapacitors†. Chin J Chem 39:1265–1272. https://doi.org/10.1002/cjoc.202000676

    Article  CAS  Google Scholar 

  30. Reske R, Mistry H, Behafarid F et al (2014) Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J Am Chem Soc 136:6978–6986. https://doi.org/10.1021/ja500328k

    Article  CAS  PubMed  Google Scholar 

  31. Ramachandran R, Hu Q, Rajavel K et al (2020) Non-peripheral octamethyl-substituted copper (II) phthalocyanine nanorods with MXene sheets: an excellent electrode material for symmetric supercapacitor with enhanced electrochemical performance. J Power Sources 471:228472. https://doi.org/10.1016/j.jpowsour.2020.228472

    Article  CAS  Google Scholar 

  32. Li M, Hu Q, Shan H et al (2021) Fabrication of copper phthalocyanine/reduced graphene oxide nanocomposites for efficient photocatalytic reduction of hexavalent chromium. Chemosphere 263:128250. https://doi.org/10.1016/j.chemosphere.2020.128250

    Article  CAS  PubMed  Google Scholar 

  33. Basiuk EV, Huerta L, Basiuk VA (2019) Noncovalent bonding of 3d metal(II) phthalocyanines with single-walled carbon nanotubes: a combined DFT and XPS study. Appl Surf Sci 470:622–630. https://doi.org/10.1016/j.apsusc.2018.11.159

    Article  CAS  Google Scholar 

  34. Latiff NM, Fu X, Mohamed DK et al (2020) Carbon based copper(II) phthalocyanine catalysts for electrochemical CO2 reduction: effect of carbon support on electrocatalytic activity. Carbon 168:245–253. https://doi.org/10.1016/j.carbon.2020.06.066

    Article  CAS  Google Scholar 

  35. Ren S, Joulié D, Salvatore D et al (2019) Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365:367–369. https://doi.org/10.1126/science.aax4608

    Article  CAS  PubMed  Google Scholar 

  36. Dinh C-T, Burdyny T, Kibria MG et al (2018) CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360:783–787. https://doi.org/10.1126/science.aas9100

    Article  CAS  PubMed  Google Scholar 

  37. Chen J, Zhu M, Li J et al (2020) Structure–activity relationship of the polymerized cobalt phthalocyanines for electrocatalytic carbon dioxide reduction. J Phys Chem C 124:16501–16507. https://doi.org/10.1021/acs.jpcc.0c04741

    Article  CAS  Google Scholar 

  38. Li X, Chai G, Xu X et al (2020) Electrocatalytic reduction of CO2 to CO over iron phthalocyanine-modified graphene nanocomposites. Carbon 167:658–667. https://doi.org/10.1016/j.carbon.2020.06.036

    Article  CAS  Google Scholar 

  39. Li T, Mei Y, Li H et al (2020) Highly selective and active electrochemical reduction of CO2 to CO on a polymeric Co(II) phthalocyanine@graphitic carbon nitride nanosheet–carbon nanotube composite. Inorg Chem 59:14184–14192. https://doi.org/10.1021/acs.inorgchem.0c01977

    Article  CAS  PubMed  Google Scholar 

  40. Huai M, Yin Z, Wei F et al (2020) Electrochemical CO2 reduction on heterogeneous cobalt phthalocyanine catalysts with different carbon supports. Chem Phys Lett 754:137655. https://doi.org/10.1016/j.cplett.2020.137655

    Article  CAS  Google Scholar 

  41. Lu X, Wu Y, Yuan X et al (2018) High-performance electrochemical CO2 reduction cells based on non-noble metal catalysts. ACS Energy Lett 3:2527–2532. https://doi.org/10.1021/acsenergylett.8b01681

    Article  CAS  Google Scholar 

  42. Wang M, Torbensen K, Salvatore D et al (2019) CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat Commun 10:3602. https://doi.org/10.1038/s41467-019-11542-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang X, Ren G, Zhang C et al (2020) Photocatalytic reduction of CO2 to CO over 3D Bi2MoO6 microspheres: simple synthesis, high efficiency and selectivity, reaction mechanism. Catal Lett 150:2510–2516. https://doi.org/10.1007/s10562-020-03182-3

    Article  CAS  Google Scholar 

  44. Wu J, Li X, Shi W et al (2018) Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew Chem Int Ed Engl 57:8719–8723. https://doi.org/10.1002/anie.201803514

    Article  CAS  PubMed  Google Scholar 

  45. Yi J-D, Xie R, Xie Z-L et al (2020) Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: stabilizing key intermediates with hydrogen bonding. Angew Chem Int Ed 59:23641–23648. https://doi.org/10.1002/anie.202010601

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Duan Lele from the chemistry department in SUSTech for assistance in the flow cell setup for this work.

Funding

This work is supported by the Shenzhen Overseas High-Level Talents Innovation Plan of Technical Innovation (Project no. KQJSCX20180323140712012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaju Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2655 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Xu, J., Qi, F. et al. Facile preparation of tetrafluoro-substituted cobalt phthalocyanine nanorods attached on carbon nanotubes for efficient electrocatalytic CO2 reduction. J Solid State Electrochem 27, 1269–1278 (2023). https://doi.org/10.1007/s10008-023-05480-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05480-3

Keywords

Navigation