Skip to main content
Log in

Effect of oxalic acid (complexing agent) on anodic dissolution of Cobalt in hydrogen peroxide solutions: mechanism and kinetic analysis by electrochemical impedance spectroscopy

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The anodic dissolution of Cobalt in H2O2 solution is investigated in the presence and absence of a complexing agent, oxalic acid, using various techniques including electrochemical impedance spectroscopy (EIS). Anodic polarization measurements of both the solutions show that active dissolution occurs in the potential range of 0 to 600 mV w.r.t open circuit potential (OCP) and the addition of oxalic acid enhances the dissolution of Co by forming highly soluble Cobalt complexes. The mechanistic reaction pathway of Co dissolution at metal-solution interface is investigated by performing EIS measurements at various overpotentials under anodic conditions. EIS spectra exhibit two loops; capacitance (higher frequency) followed by inductance (lower frequency) at all the overpotentials and it was modeled by a multi-step mechanism with 3 intermediate adsorbed species. The dissolution via both chemical and electrochemical steps is considered in the proposed model. From the parameters obtained, dominance of \(Co_{ad}^{2 + }\) species on the Co metal surface is observed for both the systems. The oxides/hydroxides formed on the Co surface on the addition of oxalic acid to H2O2 are higher than using only H2O2, thus properly justifying the role of a complexing agent in a CMP slurry. Products formed on exposure of Co to H2O2 and H2O2-oxalic acid solution at pH 9 are analyzed using X-ray photoelectron spectroscopy (XPS) analysis. The results confirm the formation and dominance of Co-oxalate complexes in H2O2—oxalic acid system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li Z, Gordon RG, Farmer DB, Lin Y, Vlassak J (2005) Electrochem Solid-State Lett 8:G182. https://doi.org/10.1149/1.1924929

    Article  CAS  Google Scholar 

  2. Wu C, Han J-H, Shi X, Koli DR, Penigalapati D (2017) ECS Trans 77:93. https://doi.org/10.1149/07705.0093ecst

    Article  CAS  Google Scholar 

  3. Popuri R, Sagi KV, Alety SR, Peethala BC, Amanapu H, Patlolla R, Babu SV (2017) ECS J Solid State Sci Technol 6:594–602. https://doi.org/10.1149/2.0111709jss

    Article  CAS  Google Scholar 

  4. Peethala BC, Amanapu HP, Lagudu URK, Babu SV (2012) J Electrochem Soc 159:H582. https://doi.org/10.1149/2.073206jes

    Article  CAS  Google Scholar 

  5. Li X, Pan G, Wang C, Guo X, He P, Li Y (2016) ECS J Solid State Sci Technol 5:P540. https://doi.org/10.1149/2.0381609jss

    Article  CAS  Google Scholar 

  6. Lu H-S, Zeng X, Wang J-X, Chen F, Qu X-P (2012) J Electrochem Soc 159:C383. https://doi.org/10.1149/2.036209jes

    Article  CAS  Google Scholar 

  7. Ismail KM, Badawy WA (2000) J Appl Electrochem 30:1303–1311

    Article  CAS  Google Scholar 

  8. Badawy WA, Al-Kharafi FM, Al-Ajmi JR (2000) J Appl Electrochem 30:P693–P704

    Article  Google Scholar 

  9. Jiang L, He Y, Li Y, Li Y, Luo J (2014) Microelectron Eng 122:82–86. https://doi.org/10.1016/j.mee.2014.02.002

    Article  CAS  Google Scholar 

  10. Fu L, Liu Y, Wang C, Han L (2018) J Semicond 39:46001. https://doi.org/10.1088/1674-4926/39/4/046001

    Article  CAS  Google Scholar 

  11. Lu H-S, Wang J-X, Zeng X, Chen F, Zhang X-M, Zhang W-J, Qu X-P (2012) Electrochem Solid State Lett 15:H97. https://doi.org/10.1149/2.017204esl

    Article  CAS  Google Scholar 

  12. Hazarika J, Rajaraman PV (2020) ECS J Solid State Sci Technol 9:024008. https://doi.org/10.1149/2162-8777/ab682a

  13. Behl WK, Toni JE (1971) J Electroanal Chem Interfacial Electrochem 31:63–75. https://doi.org/10.1016/S0022-0728(71)80043-8

    Article  CAS  Google Scholar 

  14. Jayaraman TR, Venkatesan VK, Udupa HVK (1975) Electrochim Acta 20:209–213. https://doi.org/10.1016/0013-4686(75)85026-2

    Article  CAS  Google Scholar 

  15. Real SG, Ribotta SB, Arvia AJ (2008) Corros Sci 50:463–472. https://doi.org/10.1016/j.corsci.2007.07.001

    Article  CAS  Google Scholar 

  16. Calderón JA, Barcia OE, Mattos OR (2008) Corros Sci 50:2101–2109. https://doi.org/10.1016/j.corsci.2008.04.013

    Article  CAS  Google Scholar 

  17. Davies DH, Burstein GT (1980) Corros Sci 20:973–987. https://doi.org/10.1016/0010-938X(80)90078-5

    Article  CAS  Google Scholar 

  18. Burstein GT, Davies DH (1980) Corros Sci 20:989–995. https://doi.org/10.1016/0010-938X(80)90079-7

    Article  CAS  Google Scholar 

  19. Gervasi CA, Biaggio SR, Vilche JR, Arvia AJ (1991) Electrochim Acta 36:2147–2152. https://doi.org/10.1016/0013-4686(91)85223-T

    Article  CAS  Google Scholar 

  20. Gervasi CA, Vilche JR, Alvarez PE (1996) Electrochim Acta 41:455–461. https://doi.org/10.1016/0013-4686(95)00329-0

    Article  CAS  Google Scholar 

  21. Paul T, Srinivasan R (2020) J Solid State Electrochem 24:1291–1304. https://doi.org/10.1007/s10008-020-04613-2

    Article  CAS  Google Scholar 

  22. Kwon O, Bae KH, Byun J, Lim T, Kim JJ (2020) Microelectron Eng 227:111308. https://doi.org/10.1016/j.mee.2020.111308

    Article  CAS  Google Scholar 

  23. Zuo J, Wang F, Hu K, Wang L, Yuan Y, Zhang K (2020) China Semiconductor Technology International Conference (CSTIC), Shanghai, China, pp 1–3. https://doi.org/10.1109/CSTIC49141.2020.9282460

  24. Lowalekar VP (2006) Thesis, The University of Arizona. http://arizona.openrepository.com/arizona/handle/10150/193886

  25. Raj AD, Kumar PS, Mangalaraj D, Ponpandian N (2012) Sens Lett 10:826–832 (7). https://doi.org/10.1166/sl.2012.2574

  26. Peethala BC (2011) Thesis, Clarkson University

  27. Eom DH, Park JG, Lee ES (2002) Jpn J Appl Phys 41:1305. https://doi.org/10.1143/JJAP.41.1305

    Article  CAS  Google Scholar 

  28. Miller A, Granstrom J (2017) US9576818B2

  29. Gorantla VRK, Babel A, Pandija S, Babu SV (2005) Electrochem Solid State Lett 8:G131. https://doi.org/10.1149/1.1883873

    Article  CAS  Google Scholar 

  30. Gorantla VRK, Assiongbon KA, Babu SV, Roy D (2005) J Electrochem Soc 152:G404. https://doi.org/10.1149/1.1890786

    Article  CAS  Google Scholar 

  31. Ramakrishnan S, Janjam SVSB, Patri UB, Roy D, Babu SV (2007) Microelectron Eng 84:80–86. https://doi.org/10.1016/j.mee.2006.08.011

    Article  CAS  Google Scholar 

  32. Janjam S, Peddeti S, Roy D, Babu SV (2008) Electrochem Solid State Lett 11:H327. https://doi.org/10.1149/1.2980345

    Article  CAS  Google Scholar 

  33. Janjam S, Peethala BC, Roy D, Babu SV (2009) Electrochem Solid State Lett 13:H1. https://doi.org/10.1021/ja01152a065

    Article  Google Scholar 

  34. Barney JE, Argersinger WJ, Reynolds CA (1951) J Am Chem Soc 73:3785–3788

    Article  CAS  Google Scholar 

  35. McAuley A, Nancollas GH (1960) Trans Faraday Soc 56:1165–1171

    Article  CAS  Google Scholar 

  36. Meites L (1950) J Am Chem Soc 72:180–184

    Article  CAS  Google Scholar 

  37. Hu L, Pan G, Xu Y, Wang H, Zhang Y, Wang R, Wang C (2020) ECS J Solid State Sci Technol 9:34007. https://doi.org/10.1149/2162-8777/ab80b2

    Article  Google Scholar 

  38. Amanapu HP, Sagi KV, Teugels LG, Babu SV (2013) ECS J Solid State Sci Technol 2:P445–P451. https://doi.org/10.1149/2.018311jss

    Article  CAS  Google Scholar 

  39. Poddar MK, Jalalzai P, Sahir S, Yerriboina NP, Kim TG, Park JG (2021) Appl Surf Sci 537:147862. https://doi.org/10.1016/j.apsusc.2020.147862

    Article  CAS  Google Scholar 

  40. Zhang L, Wang T, Lu X (2020) J Mater Sci 55:8992–9002. https://doi.org/10.1007/s10853-020-04579-6

    Article  CAS  Google Scholar 

  41. Manivannan R, Ramanathan S (2009) Appl Surf Sci 255:3764–3768. https://doi.org/10.1016/j.apsusc.2008.10.040

    Article  CAS  Google Scholar 

  42. Li Y, Babu SV (2001) Electrochem. Solid-State Lett. 4:G20. https://doi.org/10.1149/1.1342185

    Article  CAS  Google Scholar 

  43. Hazarika J, Gupta A, Rajaraman PV (2022) ECS J Solid State Sci Technol 11:54007. https://doi.org/10.1149/2162-8777/ac6d72

    Article  Google Scholar 

  44. Cai Q, Wang L, Wei B, Liu Q (2006) Surf Coatings Technol 200:3727–3733. https://doi.org/10.1016/j.surfcoat.2005.05.039

    Article  CAS  Google Scholar 

  45. Lim T, Park KJ, Kim MJ, Koo H-C, Kim JJ (2012) J Electrochem Soc 159:D724–D729. https://doi.org/10.1149/2.056212jes

    Article  CAS  Google Scholar 

  46. Prasanna Venkatesh R, Ramanathan S (2010) J Appl Electrochem 40:767–776. https://doi.org/10.1007/s10800-009-0055-4

    Article  CAS  Google Scholar 

  47. Sun X, Ma T, Yin D, Tan B, Yang F, Liu M, Gao P, Zhang S, Wang Y, He Y (2021) ECS J Solid State Sci Technol 10:024003. https://doi.org/10.1149/2162-8777/abe1d8

  48. Okamoto Y, Imanaka T, Teranishi S (1980) J Catal 460:448–460. https://doi.org/10.1016/0021-9517(80)90322-X

    Article  Google Scholar 

  49. Yan Q, Li X, Zhao Q, Chen G (2012) J Hazard Mater 209–210:385–391. https://doi.org/10.1016/j.jhazmat.2012.01.039

    Article  CAS  PubMed  Google Scholar 

  50. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Appl Surf Sci 257:2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  51. Patil D, Patil P, Subramanian V, Joy PA, Potdar HS (2010) Talanta 81:37–43. https://doi.org/10.1016/j.talanta.2009.11.034

    Article  CAS  PubMed  Google Scholar 

  52. Feng Y, Li L, Niu S, Qu Y, Zhang Q, Li Y, Zhao W, Li H, Shi J (2012) Appl Catal B Environ 111–112:461–466. https://doi.org/10.1016/j.apcatb.2011.10.035

    Article  CAS  Google Scholar 

  53. Chenakin SP, Kruse N (2021) Vacuum 187:110090. https://doi.org/10.1016/j.vacuum.2021.110090

    Article  CAS  Google Scholar 

  54. Chen X, Wang X, Fang D (2020) Fullerenes Nanotub Carbon Nanostructures 28:1048–1058. https://doi.org/10.1080/1536383X.2020.1794851

    Article  CAS  Google Scholar 

  55. Singh J, Gusain A, Saxena V, Chauhan AK, Veerender P, Koiry SP, Jha P, Jain A, Aswal DK, Gupta SK (2013) J Phys Chem C 117:21096–21104. https://doi.org/10.1021/jp4062994

    Article  CAS  Google Scholar 

  56. Maddala J, Sambath K, Kumar V, Ramanathan S (2010) J Electroanal Chem 638:183–188. https://doi.org/10.1016/j.jelechem.2009.11.021

    Article  CAS  Google Scholar 

  57. Farelas F, Galicia M, Brown B, Nesic S, Castaneda H (2010) Corros Sci 52:509–517. https://doi.org/10.1016/j.corsci.2009.10.007

    Article  CAS  Google Scholar 

  58. Li P, Tan TC, Lee JY (1996) Corros Sci 38:1935–1955. https://doi.org/10.1016/S0010-938X(96)00079-0

    Article  CAS  Google Scholar 

  59. Benbouzid AZ, Gomes MP, Costa I, Gharbi O, Pébère N, Rossi JL, Tran MTT, Tribollet B, Turmine M, Vivier V (2022) Corros Sci 205. https://doi.org/10.1016/j.corsci.2022.110463

  60. Baranwal PK, Rajaraman PV (2019) J Mater Res Technol 8:1366–1378. https://doi.org/10.1016/j.jmrt.2018.05.029

    Article  CAS  Google Scholar 

  61. Talukdar A, Rajaraman PV (2020) ACS Omega 5:11378–11388. https://doi.org/10.1021/acsomega.0c00387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee SW, Bae KH, Kwon OJ, Kim JJ (2016) Microelectron Eng 162:17–22. https://doi.org/10.1016/j.mee.2016.04.019

    Article  CAS  Google Scholar 

  63. Keddam M, Mottos OR, Takenouti H (1981) J Electrochem Soc 128:257. https://doi.org/10.1149/1.2127402

    Article  CAS  Google Scholar 

  64. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solution. NACE 307

  65. Baranwal PK, Prasanna Venkatesh R (2017) J Solid State Electrochem. 21:1373–1384. https://doi.org/10.1007/s10008-016-3497-8

    Article  CAS  Google Scholar 

  66. Gregori J, Gimenez-Romero D, Garcia-Jareño JJ, Vicente F (2006) J Solid State Electrochem 10:920–928. https://doi.org/10.1007/s10008-005-0038-2

    Article  CAS  Google Scholar 

  67. Baranwal PK, Rajaraman PV (2019) Int J Chem Kinet 51:497–510. https://doi.org/10.1002/kin.21272

    Article  CAS  Google Scholar 

  68. Bojinov M (1996) J Electroanal Chem 405:15–22. https://doi.org/10.1149/1.1342185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanna Venkatesh Rajaraman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 819 KB)

Appendix

Appendix

  1. 1.

    The steady state mass balance of the adsorbed species, \({Co}_{ad}^{+}\)\({Co}_{ad}^{2+}\), and \({Co}_{ad}^{3+}\) for the proposed mechanism are given by the following expressions:

    $$k_{1} (1 - \theta_{1ss} - \theta_{2ss} - \theta_{3ss} ) + k_{ - 2} \theta_{2} = k_{2} \theta_{1ss} + k_{ - 1} \theta_{1ss}$$
    (41)
    $$k_{2} \theta_{1ss} + k_{ - 3} \theta_{3ss} = (k_{3} + k_{5} + k_{ - 2} )\theta_{2ss}$$
    (42)
    $$k_{3} \theta_{2ss} = \left( {k_{4} + k_{ - 3} } \right)\theta_{3ss}$$
    (43)
  2. 2.

    \(\frac{{{\text{d}}\theta_{1} }}{{{\text{d}}V}}\), \(\frac{{{\text{d}}\theta_{2} }}{{{\text{d}}V}}\) and \(\frac{{{\text{d}}\theta_{3} }}{{{\text{d}}V}}\) of Eq. (36) can be determined by applying Taylor’s approximation, and expanding the mass balance equation (unsteady state). It is to be mentioned that in order to maintain linearity the terms of higher order are neglected.

    $$\frac{{d\theta_{1} }}{dV} = \frac{{AK\left( {F_{1} J_{1} - GK} \right) + BIF_{1} J_{1} - BIGK + BJ_{1} \left( {KH - F_{1} I} \right)}}{{D_{1} K\left( {KH - F_{1} I} \right) + KE\left( {AK + BI} \right)}}$$
    (44)
    $$\frac{{d\theta_{2} }}{dV} = \frac{{KE\left( {\frac{{d\theta_{1} }}{dV}} \right) - F_{1} J_{1} + GK}}{{KH - F_{1} I}}$$
    (45)
    $$\frac{{d\theta_{3} }}{dV} = \frac{{IKE\left( {\frac{{d\theta_{1} }}{dV}} \right) - IF_{1} J_{1} + IGK - J_{1} \left( {KH - F_{1} I} \right)}}{{K\left( {KH - F_{1} I} \right)}}$$
    (46)

Here,

$$n = 1$$
(47)
$$A = k_{1} - k_{ - 2}$$
(48)
$$B = k_{1}$$
(49)
$$\begin{aligned}C =& k_{1} b_{1} - \big( {k_{1} b_{1} + k_{2} b_{2} + k_{ - 1} b_{ - 1} } \big)\theta_{1ss}\\& - \left( {k_{1} b_{1} - k_{ - 2} b_{ - 2} } \right)\theta_{2ss} - k_{1} b_{1} \theta_{3ss}\end{aligned}$$
(50)
$$D_{1} = k_{1} + k_{2} + k_{ - 1} + j\omega \tau$$
(51)
$$E = k_{2}$$
(52)
$$F_{1} = k_{ - 3}$$
(53)
$$G = k_{2} b_{2} \theta_{1ss} - \left( {k_{3} b_{3} + k_{5} b_{5} + k_{ - 2} b_{ - 2} } \right)\theta_{2ss} + k_{ - 3} b_{ - 3} \theta_{3ss}$$
(54)
$$H = k_{3} + k_{5} + k_{ - 2} + j\omega \tau$$
(55)
$$I = k_{3}$$
(56)
$$J_{1} = \left( {k_{4} b_{4} + k_{ - 3} b_{ - 3} } \right)\theta_{3ss} - k_{3} b_{3} \theta_{2ss}$$
(57)
$$K = k_{4} + k_{ - 3} + j\omega \tau$$
(58)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazarika, J., Talukdar, A. & Rajaraman, P.V. Effect of oxalic acid (complexing agent) on anodic dissolution of Cobalt in hydrogen peroxide solutions: mechanism and kinetic analysis by electrochemical impedance spectroscopy. J Solid State Electrochem 27, 895–909 (2023). https://doi.org/10.1007/s10008-023-05379-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05379-z

Keywords

Navigation