Skip to main content
Log in

Effect of FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, Li1.2Ni0.13Co0.13Mn0.54O2 was prepared by the sol–gel method and coated with FePO4. The experimental results show that the material surface is uniformly coated with FePO4. A small amount of coating will not change the layered structure of the material. Among them, the material with 5% FePO4 coating has the best performance. The first charge and discharge specific capacity at 0.1 C current density is 324.4 mAh g−1 and 280.4 mAh g−1, respectively. And the first coulomb efficiency is 86.4%, which is significantly higher than 75.6% of the pristine material. The improvement of the first charge–discharge performance of the coating material is due to the decrease of discharge voltage plateau and the redox of FePO4 with electrochemical activity. When the FePO4 coating content is 5%, the cycling performance of the material at 0.2 C current density is the best. After 100 cycles, the capacity decays from 268.4 to 232.9 mAh g−1, and the capacity retention rate is 86.78%, which is higher than 60.58% of the pristine sample. The discharge specific capacity of 5% coated material at 5 C rate is 134.8 mAh g−1, which is higher than 95.3 mAh g−1 of the pristine material.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang Y, Cao G (2008) Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater 20:2251–2269. https://doi.org/10.1002/adma.200702242

    Article  CAS  Google Scholar 

  2. Wu Y, Wen Z, Li J (2011) Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv Mater 23:1126–1129. https://doi.org/10.1002/adma.201003713

    Article  CAS  Google Scholar 

  3. Luo Y, Wei H, Tang L, Huang Y, Wang Z, He Z, Yan C, Mao J, Dai K, Zheng J (2022) Nickel-rich and cobalt-free layered oxide cathode materials for lithium ion batteries. Energy Storage Materials 50:274–307. https://doi.org/10.1016/j.ensm.2022.05.019

    Article  Google Scholar 

  4. Huang X, Zhang Z, He J, Bai Z, Lu L, Li J (2021) Effects of chromium/fluorine co-doping on the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion batteries. J Mater Sci 56:9836–9851. https://doi.org/10.1007/s10853-021-05922-1

    Article  CAS  Google Scholar 

  5. Liu L, Su G, Cheng X, Han H, Qiang W, Huang B (2022) Electrochemical performances of Li-rich Mn-based layered structure cathodes optimized by compositional design. J Solid State Electrochem. https://doi.org/10.1007/s10008-022-05249-0

    Article  Google Scholar 

  6. Yan P, Zheng J, Xiao J, Wang C-M, Zhang J-G (2015) Recent advances on the understanding of structural and composition evolution of LMR cathodes for Li-ion batteries. Front Energy Res 3. https://doi.org/10.3389/fenrg.2015.00026

  7. Sathiya M, Abakumov AM, Foix D, Rousse G, Ramesha K, Saubanere M, Doublet ML, Vezin H, Laisa CP, Prakash AS, Gonbeau D, VanTendeloo G, Tarascon JM (2015) Origin of voltage decay in high-capacity layered oxide electrodes. Nat Mater 14:230–238. https://doi.org/10.1038/nmat4137

    Article  CAS  Google Scholar 

  8. Nayak P K, Erickson E M, Schipper F, Penki T R, Munichandraiah N, Adelhelm P, Sclar H, Amalraj F, Markovsky B, Aurbach D (2018) Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv Energy Mater 8. https://doi.org/10.1002/aenm.201702397

  9. Yu F, Que L, Wang Z, Zhang Y, Xue Y, Liu B, Gu D (2016) Layered-spinel capped nanotube assembled 3D Li-rich hierarchitectures for high performance Li-ion battery cathodes. J Mater Chem A 4:18416–18425. https://doi.org/10.1039/c6ta05676h

    Article  CAS  Google Scholar 

  10. Armstrong AR, Holzapfel M, Novák P, Johnson CS, Kang S-H, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698. https://doi.org/10.1021/ja062027

    Article  CAS  Google Scholar 

  11. Wu Y, Ma C, Yang J, Li Z, Allard LF, Liang C, Chi M (2015) Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale. J Mater Chem A 3:5385–5391. https://doi.org/10.1039/c4ta06856d

    Article  CAS  Google Scholar 

  12. Yan P, Xiao L, Zheng J, Zhou Y, He Y, Zu X, Mao SX, Xiao J, Gao F, Zhang J-G, Wang C-M (2015) Probing the degradation mechanism of Li2MnO3 cathode for Li-ion batteries. Chem Mater 27:975–982. https://doi.org/10.1021/cm504257m

    Article  CAS  Google Scholar 

  13. Li Z, Cao S, Wu C, Li H, Chen J, Guo W, Chang B, Shen Y, Bai Y, Wang X (2022) A facile and high-effective oxygen defect engineering for improving electrochemical performance of lithium-rich manganese-based cathode materials. J Power Sources 536. https://doi.org/10.1016/j.jpowsour.2022.231456

  14. Li Z, Cao S, Xie X, Wu C, Li H, Chang B, Chen G, Guo X, Zhang X, Wang X (2021) Boosting electrochemical performance of lithium-rich manganese-based cathode materials through a dual modification strategy with defect designing and interface engineering. ACS Appl Mater Interfaces 13:53974–53985. https://doi.org/10.1021/acsami.1c16743

    Article  CAS  Google Scholar 

  15. Yang S, Wei H, Tang L, Yan C, Li J, He Z, Li Y, Zheng J, Mao J, Dai K (2021) Fast Li-ion conductor Li1+yTi2-yAly(PO4)3 modified Li1.2[Mn0.54Ni0.13Co0.13]O2 as high performance cathode material for Li-ion battery. Ceram Int 47:18397–18404. https://doi.org/10.1016/j.ceramint.2021.03.162

    Article  CAS  Google Scholar 

  16. Fan X, Huang Y, Wei H, Tang L, He Z, Yan C, Mao J, Dai K, Zheng J (2021) Surface modification engineering enabling 4.6 V single‐crystalline Ni‐rich cathode with superior long‐term cyclability. Adv Function Mater 32. https://doi.org/10.1002/adfm.202109421

  17. Tariq HA, Abraham JJ, Quddus AA, AlQaradawi S, Kahraman R, Shakoor RA (2021) Graphene wrapped Y2O3 coated LiNi0.5Mn1.5O4 quasi-spheres as novel cathode materials for lithium-ion batteries. J Mater Res Tech 14:1377–1389. https://doi.org/10.1016/j.jmrt.2021.07.038

    Article  CAS  Google Scholar 

  18. Zhou X, Ding J, Tang J, Yang J, Wang H, Jia M (2019) Tailored MoO3-encapsulated FeF3·0.33H2O composites as high performance cathodes for Li-ion batteries. J Electroanal Chem 847. https://doi.org/10.1016/j.jelechem.2019.113227

  19. He H, Zan L, Zhang Y (2016) Effects of amorphous V2O5 coating on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion batteries. J Alloys Compd 680:95–104. https://doi.org/10.1016/j.jallcom.2016.04.115

    Article  CAS  Google Scholar 

  20. Abdel-Ghany A, El-Tawil R S, Hashem A M, Mauger A, Julien C M (2019) Improved electrochemical performance of LiNi0.5Mn0.5O2 by Li-enrichment and AlF3 coating. Materialia 5. https://doi.org/10.1016/j.mtla.2019.100207

  21. Liu X, Liu J, Huang T, Yu A (2013) CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim Acta 109:52–58. https://doi.org/10.1016/j.electacta.2013.07.069

    Article  CAS  Google Scholar 

  22. Kim CS, Cho J-H, Park YJ (2014) Electrochemical properties of FeF3-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material. Mater Res Bull 58:49–53. https://doi.org/10.1016/j.materresbull.2014.03.031

    Article  CAS  Google Scholar 

  23. Feng W, Huang Z, Li W (2022) Improving the performance of Li-rich Mn-based cathode materials via combined surface modification with glacial acetic acid and Li3PO4. J Electroanal Chem 917. https://doi.org/10.1016/j.jelechem.2022.116250

  24. Wu F, Li N, Su Y, Zhang L, Bao L, Wang J, Chen L, Zheng Y, Dai L, Peng J, Chen S (2014) Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. Nano Lett 14:3550–3555. https://doi.org/10.1021/nl501164y

    Article  CAS  Google Scholar 

  25. Xia Y, Zhu H, Liang C, Xiao Z, Gan Y, Zhang J, Tao X, Huang H, Zhang W (2017) Synthesis and electrochemical properties of LiMnPO4-modified Li[Li0.2Mn0.534Co0.133Ni0.133]O2 cathode material for Li-ion batteries. Electrochim Acta 235:1–9. https://doi.org/10.1016/j.electacta.2017.03.048

    Article  CAS  Google Scholar 

  26. Xiao B, Wang B, Liu J, Kaliyappan K, Sun Q, Liu Y, Dadheech G, Balogh MP, Yang L, Sham T-K, Li R, Cai M, Sun X (2017) Highly stable Li1.2Mn0.54Co0.13Ni0.13O2 enabled by novel atomic layer deposited AlPO4 coating. Nano Energy 34:120–130. https://doi.org/10.1016/j.nanoen.2017.02.015

    Article  CAS  Google Scholar 

  27. Zhao R, Liang J, Huang J, Zeng R, Zhang J, Chen H, Shi G (2017) Improving the Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode properties at high operating voltage by double coating layer of Al2O3 and AlPO4. J Alloys Compd 724:1109–1116. https://doi.org/10.1016/j.jallcom.2017.05.331

    Article  CAS  Google Scholar 

  28. Xiao Z, Meng J, Li Q, Wang X, Huang M, Liu Z, Han C, Mai L (2018) Novel MOF shell-derived surface modification of Li-rich layered oxide cathode for enhanced lithium storage. Sci Bull 63:46–53. https://doi.org/10.1016/j.scib.2017.12.011

    Article  CAS  Google Scholar 

  29. Liu X, Su Q, Zhang C, Huang T, Yu A (2015) Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode with an ionic conductive LiVO3 coating layer. ACS Sustain Chem Eng 4:255–263. https://doi.org/10.1021/acssuschemeng.5b01083

    Article  CAS  Google Scholar 

  30. Ma B, Huang X, Liu Z, Tian X, Zhou Y (2022) Al2O3 coated single-crystalline hexagonal nanosheets of LiNi0.6Co0.2Mn0.2O2 cathode materials for the high-performance lithium-ion batteries. J Mater Sci 57:2857–2869. https://doi.org/10.1007/s10853-021-06726-z

    Article  CAS  Google Scholar 

  31. Huang Y, Chen J, Ni J, Zhou H, Zhang X (2009) A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. J Power Sources 188:538–545. https://doi.org/10.1016/j.jpowsour.2008.12.037

    Article  CAS  Google Scholar 

  32. Yi T-F, Li Y-M, Li X-Y, Pan J-J, Zhang Q, Zhu Y-R (2017) Enhanced electrochemical property of FePO4-coated LiNi0.5Mn1.5O4 as cathode materials for Li-ion battery. Sci Bull 62:1004–1010. https://doi.org/10.1016/j.scib.2017.07.003

    Article  CAS  Google Scholar 

  33. Wang Z, Lu H-Q, Yin Y-P, Sun X-Y, Bai X-T, Shen X-L, Zhuang W-D, Lu S-G (2015) FePO4-coated Li[Li0.2Ni0.13Co0.13Mn0.54]O2 with improved cycling performance as cathode material for Li-ion batteries. Rare Met 36:899–904. https://doi.org/10.1007/s12598-015-0647-6

    Article  CAS  Google Scholar 

  34. Wang F, Xiao S, Li M, Wang X, Zhu Y, Wu Y, Shirakawa A, Peng J (2015) A nanocomposite of Li2MnO3 coated by FePO4 as cathode material for lithium ion batteries. J Power Sources 287:416–421. https://doi.org/10.1016/j.jpowsour.2015.04.034

    Article  CAS  Google Scholar 

  35. Qing C, Bai Y, Yang J, Zhang W (2011) Enhanced cycling stability of LiMn2O4 cathode by amorphous FePO4 coating. Electrochim Acta 56:6612–6618. https://doi.org/10.1016/j.electacta.2011.04.131

    Article  CAS  Google Scholar 

  36. Jarvis KA, Deng Z, Allard LF, Manthiram A, Ferreira PJ (2011) Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem Mater 23:3614–3621. https://doi.org/10.1021/cm200831c

    Article  CAS  Google Scholar 

  37. Wei H, Tang L, Huang Y, Wang Z, Luo Y, He Z, Yan C, Mao J, Dai K, Zheng J (2021) Comprehensive understanding of Li/Ni intermixing in layered transition metal oxides. Mater Today 51:365–392. https://doi.org/10.1016/j.mattod.2021.09.013

    Article  CAS  Google Scholar 

  38. Ding C, Yuan M, Cao X, Zheng L, Wang K (2022) Hydrothermal synthesis and electrochemical performance of Fe-doped Co hydroxide electrode materials. J Solid State Electrochem 26:2445–2455. https://doi.org/10.1007/s10008-022-05265-0

    Article  CAS  Google Scholar 

  39. Wang Q, Liu J, Murugan A, Manthiram A (2009) High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability. J Mater Chem 19. https://doi.org/10.1039/b823506f

  40. Hong Y, Ryu K, Park Y, Kim M, Lee J, Chang S (2002) Amorphous FePO4 as 3 V cathode material for lithium secondary batteries. J Mater Chem 12:1870–1874. https://doi.org/10.1039/b200901c

    Article  CAS  Google Scholar 

  41. Wang Z, Liu E, He C, Shi C, Li J, Zhao N (2013) Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J Power Sources 236:25–32. https://doi.org/10.1016/j.jpowsour.2013.02.022

    Article  CAS  Google Scholar 

  42. Zhang H, Qiao Q, Li G, Ye S, Gao X (2012) Surface nitridation of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as cathode material for lithium-ion battery. J Mater Chem 22. https://doi.org/10.1039/c2jm30989k

  43. Wu Y, Manthiram A (2008) Structural stability of chemically delithiated layered (1−z)Li[Li1/3Mn2/3]O2–zLi[Mn0.5−yNi0.5−yCo2y]O2 solid solution cathodes. J Power Sources 183:749–754. https://doi.org/10.1016/j.jpowsour.2008.05.028

    Article  CAS  Google Scholar 

  44. Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3LiCo(1/3)Ni(1/3)Mn(1/3)O2. J Am Chem Soc 133:4404–4419. https://doi.org/10.1021/ja108588y

    Article  CAS  Google Scholar 

  45. Okada S, Yamamoto T, Okazaki Y, Yamaki J-i, Tokunaga M, Nishida T (2005) Cathode properties of amorphous and crystalline FePO4. J Power Sources 146:570–574. https://doi.org/10.1016/j.jpowsour.2005.03.200

    Article  CAS  Google Scholar 

  46. Chang Z, Zhang Y, He W, Wang J, Zheng H, Qu B, Wang X, Xie Q, Peng D-L (2022) Surface spinel-coated and polyanion-doped Co-free Li-rich layered oxide cathode for high-performance lithium-ion batteries. Ind Eng Chem Res 61:7464–7473. https://doi.org/10.1021/acs.iecr.1c04047

    Article  CAS  Google Scholar 

  47. Chen D, Zheng F, Li L, Chen M, Zhong X, Li W, Lu L (2017) Effect of Li3PO4 coating of layered lithium-rich oxide on electrochemical performance. J Power Sources 341:147–155. https://doi.org/10.1016/j.jpowsour.2016.11.020

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Specialized Research Fund for the Technology Innovation of Foshan City (1920001001421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Bai, Z., Huang, X. et al. Effect of FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J Solid State Electrochem 27, 171–182 (2023). https://doi.org/10.1007/s10008-022-05314-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05314-8

Keywords

Navigation