Skip to main content
Log in

Electrochemical performances of Li-rich Mn-based layered structure cathodes optimized by compositional design

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Li-rich Mn-based xLi2MnO3∙(1-x)LiMO2 (M = Ni, Co, Mn) cathode materials have attracted extensive attention because of their specific discharge capacity (250–300 mAh g−1). However, their applications are significantly limited due to disadvantages, such as the low efficiency, the fast capacity attenuation, and the poor rate capability. Therefore, it is important to investigate the mechanisms controlling the electrochemical properties and improve the performances. As a solid solution, xLi2MnO3∙(1-x)LiMO2 is composed of the hexagonal phase LiMO2 and the monoclinic phase Li2MnO3. In this study, the influence of elements Ni and Li on the electrochemical properties of xLi2MnO3∙(1-x)LiMO2 is systematically studied. It is found that the decrease of Li content can lead to the increase of LiMO2 in LixCo0.13Ni0.13Mn0.54O2 system. LiMO2 might span the whole grain with the Li deficiency, thus contributing to the rapid conduction of Li ions. Meanwhile, Li2MnO3 can benefit the structural stability. The synergistic effect of the two components results in the excellent electrochemical performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Goodenough JB (2018) How we made the Li-ion rechargeable battery. Nat Electron 1(3):204–204

    Article  Google Scholar 

  2. Obama B (2017) The irreversible momentum of clean energy. Science 355(6321):126–129

    Article  CAS  Google Scholar 

  3. Yuxuan Z, Biao L, Ning J, Wangsheng C, Hao Z, Ruqiang Z, Dingguo X (2018) A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv Mater 30(16):1707255

    Article  Google Scholar 

  4. Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better… a review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2(8):922–939

    Article  CAS  Google Scholar 

  5. Yin C, Wan LY, Qiu B, Wang F, Jiang W, Cui HF, Bai JM, Ehrlich S, Wei ZN, Liu ZP (2021) Boosting energy efficiency of Li-rich layered oxide cathodes by tuning oxygen redox kinetics and reversibility. Energy Storage Mater 35:388–399

    Article  Google Scholar 

  6. Lu Z, MacNeil D, Dahn J (2001) Layered cathode materials Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochem Solid-State Lett 4(11):A191–A194

    Article  CAS  Google Scholar 

  7. Zuo Y, Li B, Jiang N, Chu W, Zhang H, Zou R, Xia D (2018) A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv Mater 30(16):1707255

    Article  Google Scholar 

  8. Kim J-S, Johnson CS, Vaughey JT, Thackeray MM, Hackney SA, Yoon W, Grey CP (2004) Electrochemical and structural properties of xLi2MO3(1− x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M ‘= Ti, Mn, Zr; 0≤ x⊠ 0.3). Chem Mater 16(10):1996–2006

  9. Thackeray M, Kang S-H, Johnson C, Vaughey J, Hackney S (2006) Comments on the structural complexity of lithium-rich Li1+xM1−xO2 electrodes (M= Mn, Ni, Co) for lithium batteries. Electrochem Commun 8(9):1531–1538

    Article  CAS  Google Scholar 

  10. Genevois C, Koga H, Croguennec L, Ménétrier M, Delmas C, Weill F (2015) Insight into the atomic structure of cycled lithium-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 using HAADF STEM and electron nanodiffraction. J Phys Chem C 119(1):75–83

  11. Jarvis KA, Deng Z, Allard LF, Manthiram A, Ferreira PJ (2011) Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem Mater 23(16):3614–3621

    Article  CAS  Google Scholar 

  12. Lu Z, Chen Z, Dahn J (2003) Lack of cation clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0< x≤ 1/2) and Li[CrxLi(1–x)/3Mn(2–2x)/3]O2 (0< x< 1). Chem Mater 15(16):3214–3220

    Article  CAS  Google Scholar 

  13. Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17(30):3112–3125

    Article  CAS  Google Scholar 

  14. Arunkumar TA, Wu Y, Manthiram A (2007) Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3Mn2/3]O2−Li[M]O2 (M = Mn0.5-yNi0.5-yCo2y and Ni1-yCoy) solid solutions. Chem Mater 19(12):3067–3073

  15. Ammundsen B, Paulsen J, Davidson I, Liu RS, Shen CH, Chen JM, Jang LY, Lee JF (2002) Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode material. J Electrochem Soc 149(4):A431-A436

  16. Koga H, Croguennec L, Mannessiez P, Menetrier M, Weill F, Bourgeois L, Duttine M, Suard E, Delmas C (2012) Li1.20Mn0.54Co0.13Ni0.13O2 with different particle sizes as attractive positive electrode materials for lithium-ion batteries: insights into their structure. J Phys Chem C 116(25):13497–13506

  17. Ohzuku T, Nagayama M, Tsuji K, Ariyoshi K (2011) High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA h g−1. J Mater Chem 21(27):10179–10188

    Article  CAS  Google Scholar 

  18. Yu H, So Y-G, Kuwabara A, Tochigi E, Shibata N, Kudo T, Zhou H, Ikuhara Y (2016) Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide. Nano Lett 16(5):2907–2915

    Article  CAS  Google Scholar 

  19. Gu M, Genc A, Belharouak I, Wang D, Amine K, Thevuthasan S, Baer DR, Zhang J-G, Browning ND, Liu J (2013) Nanoscale phase separation, cation ordering, and surface chemistry in pristine Li1.2Ni0.2Mn0.6O2 for Li-ion batteries. Chem Mater 25(11):2319–2326

  20. Yu H, Ishikawa R, So Y-G, Shibata N, Kudo T, Zhou H, Ikuhara Y (2013) Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries. Angewandte Chemie 125(23):6085–6089

  21. Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem 15(23):2257–2267

    Article  CAS  Google Scholar 

  22. Johnson CS, Kim JS, Lefief C, Li N, Vaughey JT, Thackeray MM (2004) The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x)LiMn0.5Ni0.5O2 electrodes. Electrochem Commun 6(10):1085–1091

  23. Gu M, Belharouak I, Zheng JM, Wu HM, Xiao J, Genc A, Amine K, Thevuthasan S, Baer DR, Zhang JG, Browning ND, Liu J, Wang CM (2013) Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7(1):760–767

    Article  CAS  Google Scholar 

  24. Zhu Z, Yu D, Yang Y, Su C, Huang Y, Dong Y, Waluyo I, Wang B, Hunt A, Yao X, Lee J, Xue W, Li J (2019) Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nat Energy 4(12):1049–1058

    Article  CAS  Google Scholar 

  25. Yu H, Ishikawa R, So YG, Shibata N, Kudo T, Zhou H, Ikuhara Y (2013) Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries. Angew Chem Int Ed Engl 52(23):5969–73

  26. Zhang H, Omenya F, Yan P, Luo L, Whittingham MS, Wang C, Zhou G (2017) Rock-salt growth-induced (003) cracking in a layered positive electrode for Li-ion batteries. ACS Energy Lett 2(11):2607–2615

    Article  CAS  Google Scholar 

  27. Wang T, Zhang C, Li S, Shen X, Zhou L, Huang Q, Liang C, Wang Z, Wang X, Wei W (2021) Regulating anion redox and cation migration to enhance the structural stability of Li-rich layered oxides. ACS Appl Mater Interfaces 13(10):12159–12168

    Article  CAS  Google Scholar 

  28. Qiu B, Zhang M, Wu L, Wang J, Xia Y, Qian D, Liu H, Hy S, Chen Y, An K, Zhu Y, Liu Z, Meng YS (2016) Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat Commun 7:12108

    Article  CAS  Google Scholar 

  29. Wang Z, Cheng X, Qiang W, Huang B (2019) Surface modification of Li rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode particles. Ceram Int 45(16):20016-20021

  30. Shen Z, Li D, Tang Y, Li C (2018) Effects of Gd3+ doping on the microstructure and electrochemical properties of Li1.20[Mn0.54Ni0.13Co0.13]O2 as cathode for lithium-ion batteries. J Mater Sci: Mater Electron 29(11):9717–9727

  31. Lu Y, Shi S, Yang F, Zhang T, Niu H, Wang T (2018) Mo-doping for improving the ZrF4 coated-Li[Li0.20Mn0.54Ni0.13Co0.13]O2 as high performance cathode materials in lithium-ion batteries. J Alloys Comp 767:23–33

  32. Zhou H, Yang Z, Yin C, Yang S, Li J (2018) Fabrication of nanoplate Li-rich cathode material via surfactant-assisted hydrothermal method for lithium-ion batteries. Ceram Int 44(16):20514–20523

    Article  CAS  Google Scholar 

  33. He H, Zan L, Liu J, Zhang Y (2020) Template-assisted molten-salt synthesis of hierarchical lithium-rich layered oxide nanowires as high-rate and long-cycling cathode materials. Electrochim Acta 333:135558

    Article  CAS  Google Scholar 

  34. Jarvis KA, Wang C-C, Manthiram A, Ferreira PJ (2014) The role of composition in the atomic structure, oxygen loss, and capacity of layered Li–Mn–Ni oxide cathodes. Journal of Materials Chemistry A 2(5):1353–1362

    Article  CAS  Google Scholar 

  35. Konishi H, Hirano T, Takamatsu D, Gunji A, Feng X, Furutsuki S (2015) Effect of composition of transition metals on stability of charged Li-rich layer-structured cathodes, Li1.2Ni0.2-xMn0.6-xCo2xO2 (x=0, 0.033, and 0.067), at high temperatures. Electrochim Acta 186:591–597

  36. Kim JH, Park CW, Sun YK (2003) Synthesis and electrochemical behavior of Li[Li0.1Ni0.35−x/2CoxMn0.55−x/2]O2 cathode materials. Solid State Ion 164(1):43–49

  37. Meng J, Xu L, Ma Q, Yang M, Fang Y, Wan G, Li R, Yuan J, Zhang X, Yu H, Liu L, Liu T (2022) Modulating crystal and interfacial properties by W-gradient doping for highly stable and long life Li-rich layered cathodes. Adv Func Mater 32(19):2113013

    Article  CAS  Google Scholar 

  38. Song B, Zhou C, Wang H, Liu H, Liu Z, Lai MO, Lu L (2014) Advances in sustain stable voltage of Cr-doped Li-rich layered cathodes for lithium ion batteries. J Electrochem Soc 161(10):A1723–A1730

    Article  CAS  Google Scholar 

  39. Liu FL, Zhang S, Deng C, Wu Q, Zhang M, Meng FL, Gao H, Sun YH (2012) Cobalt content optimization of layered 0.6Li[Li1/3Mn2/3]O2–0.4LiNi0.5–xMn0.5–xCo2xO2 (0 ≤ x ≤ 0.5) cathode materials prepared by the carbonate coprecipitation. J Electrochem Soc 159(10):A1591-A1597

  40. Ohzuku T, Ueda A, Nagayama M (1993) Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells. J Electrochem Soc 140(7):1862–1870

    Article  CAS  Google Scholar 

  41. Ohzuku T, Ueda A, Nagayama M, Iwakoshi Y, Komori H (1993) Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells. Electrochim Acta 38(9):1159–1167

    Article  CAS  Google Scholar 

  42. Zhao C, Kang W, Liu R, Shen Q (2013) Influence of cobalt content on the electrochemical properties of sheet-like 0.5Li2MnO3·0.5LiNi1/3+xCo1/3−2xMn1/3+xO2 as lithium ion battery cathodes. RSC Adv 3(7):2362

  43. Shen S, Hong Y, Zhu F, Cao Z, Li Y, Ke F, Fan J, Zhou L, Wu L, Dai P, Cai M, Huang L, Zhou Z, Li J, Wu Q, Sun S (2018) Tuning electrochemical properties of Li-rich layered oxide cathodes by adjusting Co/Ni ratios and mechanism investigation using in situ X-ray diffraction and online continuous flow differential electrochemical mass spectrometry. ACS Appl Mater Interfaces 10(15):12666–12677

    Article  CAS  Google Scholar 

  44. Wu Y, Xie L, He X, Zhuo L, Wang L, Ming J (2018) Electrochemical activation, voltage decay and hysteresis of Li-rich layered cathode probed by various cobalt content. Electrochim Acta 265:115–120

    Article  CAS  Google Scholar 

  45. Liu P, Zhang H, He W, Xiong T, Cheng Y, Xie Q, Ma Y, Zheng H, Wang L, Zhu Z-Z, Peng Y, Mai L, Peng DL (2019) Lithium deficiencies engineering in Li-rich layered oxide Li1.098Mn0.533Ni0.113Co0.138O2 for high-stability cathode. J Am Chem Soc 141(27):10876–10882

  46. Ma Q, Yin S, Ding F, Meng J, Zhong S, Dai C (2019) Understanding effects of lithium content on structural and electrochemical characteristics of Li1+xMn0.7Ni0.2Co0.1O2.25+x/2 cathode materials for lithium-ion batteries. Mater Sci Eng B 246:143–152

  47. Wang D, Wu Z, Xiang W, Liu Y, Wang G, Hu K, Xu Q, Song Y, Guo X (2022) Is it universal that the layered-spinel structure can improve electrochemical performance?, Journal of Energy. Chemistry 64:344–353

    Google Scholar 

  48. Pang S, Wang Y, Chen T, Shen X, Xi X, Liao D (2016) The effect of AlF3 modification on the physicochemical and electrochemical properties of Li-rich layered oxide. Ceram Int 42(4):5397–5402

    Article  CAS  Google Scholar 

  49. Dong P, Wang D, Yao Y, Li X, Zhang Y, Ru J, Ren T (2017) Stabilizing interface layer of LiNi0.5Co0.2Mn0.3O2 cathode materials under high voltage using p-toluenesulfonyl isocyanate as film forming additive. J Power Sour 344:111–118

  50. Ma Q, Wang Y, Lai F, Meng J, Dmytro S, Zhou L, Yang M, Zhang Q, Zhong S (2022) Induction and maintenance of local structural durability for high-energy nickel-rich layered oxides. Small Methods 6(6):2200255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful for the financial support by the Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB (grant no. BK20BE012, BK21BE011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Han or Bingxin Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Su, G., Cheng, X. et al. Electrochemical performances of Li-rich Mn-based layered structure cathodes optimized by compositional design. J Solid State Electrochem 26, 2379–2388 (2022). https://doi.org/10.1007/s10008-022-05249-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05249-0

Keywords

Navigation