Skip to main content
Log in

Improved electrochemical performance of Li-excessive LiMn2O4 cathode for secondary batteries

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Li-excessive Li1+xMn2-xO4-δ (x = 0, 0.05 and 0.1) thin films were prepared by a sol-gel method where the gel deposit on Pt/Ti/SiO2/Si substrate was annealed at 700 °C for 6 h in air. The physical properties of the samples were characterized by X-ray diffraction (XRD) and Raman spectroscopy. The electrochemical properties of the thin-film Li1+xMn2-xO4-δ cathodes were investigated by cyclic voltammetry and galvanostatic cycling test. As a result of XRD analysis, all samples showed a spinel structure without any secondary phase, and the lattice parameter of the Li-excessive samples was reduced compared to the pristine LiMn2O4. The observed high-energy shift of the Raman-active A1g mode for the Li-excessive samples compared to the pristine LiMn2O4 supports the reduction of the lattice parameter. The electrochemical data revealed that the Li-excessive cathodes exhibited better cycling stability than the pristine LiMn2O4 in the 3.5−4.5 V range. The Li1.1Mn1.9O4-δ cathode showed a capacity retention of about 51.1% after 700 cycles for the secondary battery, which is about 26% higher than that of the pristine LiMn2O4.

Graphical Abstract

Highlights

  • The Li1+xMn2-xO4-δ (x = 0, 0.05, and 0.1) thin films were prepared by sol-gel and spin coating technique.

  • The XRD and Raman analysis confirmed the reduction of the lattice parameter.

  • Cyclic Voltammetry results show that Li1.1Mn1.9O4-δ cathode exhibits a larger diffusion coefficient (\({D}_{{Li}}\)) compared to pristine LiMn2O4.

  • The Li-excessive cathodes exhibited better capacity retention than the pristine LiMn2O4 cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Chen ZL, Gu YJ, Huo YL, Ma XY, Wu FZ (2022) Enhanced electrochemical performance of manganese-based metal organic frameworks-derived spinel LiMn2O4 cathode materials by improving the Mn3+ content and oxygen vacancies. J Alloy Compd 917:165485

    Article  CAS  Google Scholar 

  2. Wang HY, He XF, Mei SL, Zheng YP, Feng YW, Li N, Wang ZB (2024) Boosting the cycling and storage performance of lithium nickel manganese cobalt oxide-based high-rate batteries through cathode manipulation. Electrochim Acta 474:143566

    Article  CAS  Google Scholar 

  3. Hou B, Chen J, Zhang L-H, Shi X, Zhu Z (2024) Electrochemical properties of Li-rich ternary cathode material Li1.20Mn0.44Ni0.32Co0.04O2 and its oxygen-deficient phase. Electrochim Acta 473:143463

    Article  CAS  Google Scholar 

  4. Deguchi M, Todorov YM, Abe K (2023) Functional electrolyte: Design of anti-corrosion additives for Al collectors in LiFSI-based electrolyte. Electrochim Acta 469:143267

    Article  CAS  Google Scholar 

  5. Kim SW, Na SM, Kim JC, Jun TH, Oh MH, Min KM, Park KJ (2022) Multifunctional surface modification with Co-free spinel structure on Ni-rich cathode material for improved electrochemical performance. J Alloy Compd 918:165454

    Article  CAS  Google Scholar 

  6. Olmo RD, Gonzalez GG, Sanz O, Forsyth M, Casado N (2024) Versatile mixed ionic-electronic conducting binders for high-power, high-energy batteries. Electrochim Acta 474:143547

    Article  Google Scholar 

  7. Iskandar Radzi Z, Helmy Arifin K, Zieauddin Kufian M, Balakrishnan V, Rohani Sheikh Raihan S, Abd Rahim N, Subramaniam R (2022) Review of spinel LiMn2O4 cathode materials under high cut-off voltage in lithium-ion batteries: Challenges and strategies. J Electroanal Chem 920:116623

    Article  CAS  Google Scholar 

  8. Haruna AB, Barrett DH, Rodella CB, Erasmus RM, Venter AM, Sentsho ZN, Ozoemena KI (2022) Microwave irradiation suppresses the Jahn-Teller distortion in Spinel LiMn2O4 cathode material for lithium-ion batteries. Electrochim Acta 426:140786

    Article  CAS  Google Scholar 

  9. Xiao Y, Fan J, Zhang X, Zhang D, Chang C (2019) Li2Ni0.5Mn1.5O4, spinel type cathode material with high reversible capacity. Electrochim Acta 311:170–177

    Article  CAS  Google Scholar 

  10. Celeste A, Girardi F, Gigli L, Pellegrini V, Silvestri L, Brutti S (2022) Impact of overlithiation and Al doping on the battery performance of Li-rich layered oxide materials. Electrochim Acta 428:140737

    Article  CAS  Google Scholar 

  11. Ji X, Xu Y, Zhou Y, Song J, Feng H, Wang P, Yang J, Zhuge F, Xie H, Tan Q (2022) Suppressing oxygen vacancies on the surface of Li-rich material as a high-energy cathode via high oxygen affinity Ca0.95Bi0.05MnO3 coating. Electrochim Acta 421:140465

    Article  CAS  Google Scholar 

  12. Lee YS, Sun YK, Nahm KS (1998) Synthesis of spinel LiMn2O4 cathode material prepared by an adipic acid-assisted sol-gel method for lithium secondary batteries. Solid State Ion 109:285–294

    Article  CAS  Google Scholar 

  13. Raveendranath K, Ravi J, Jayalekshmi S, Rasheed TMA, Nair KPR (2006) Thermal diffusivity measurement on LiMn2O4 and its de-lithiated form (λ-MnO2) using photoacoustic technique. Mater Sci Eng B 131:210–215

    Article  CAS  Google Scholar 

  14. Li X, Xu Y (2007) Novel method to enhance the cycling performance of spinel LiMn2O4. Electrochem Commun 9(8):2023–2026

    Article  CAS  Google Scholar 

  15. Pal U, Roy B, Hasanpoor M, Ilbeygi H, Mendes T, Kerr R, Vazhapully L, Song C, Wang D, Handford MB, Sceats M, Forsyth M, Masri DA, Howlett P (2023) A high-performing spinel LiMn2O4 cathode material with unique morphology and scaled manufacture. ChemRxiv Energy

  16. Ali ME, Tariq HA, Moossa B, Qureshi ZA, Kahraman R, Qaradawi SA, Shakoor RA (2024) LiMn2O4 – MXene nanocomposite cathode for high-performance lithium-ion batteries. Energy Rep. 11:2401–2414

    Article  Google Scholar 

  17. Bhuvaneswari S, Varadaraju UV, Gopalan R, Prakash R (2019) Structural stability and superior electrochemical performance of Sc-doped LiMn2O4 spinel as cathode for lithium ion batteries. Electrochim Acta 301:342–351

    Article  CAS  Google Scholar 

  18. Yu Y, Guo J, Xiang M, Su C, Liu X, Bai H, Bai W, Duan K (2019) Enhancing the durable performance of LiMn2O4 at high-rate and elevated temperature by nickel-magnesium dual doping. sci Rep. 9:16864

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xu G, Liu Z, Zhang C, Cui G, Chen L (2015) Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures. J Mater Chem A 3:4092–4123

    Article  CAS  Google Scholar 

  20. Pasqualini M, Calcaterra S, Maroni F, Rezvani SJ, Cicco AD, Alexander S, Rajantie H, Tossici R, Nobili F (2017) Electrochemical and spectroscopic characterization of an alumina-coated LiMn2O4 cathode with enhanced interfacial stability. Electrochim Acta 258:175–181

    Article  CAS  Google Scholar 

  21. Mou J, Deng Y, He L, Zheng Q, Jiang N, Lin D (2018) Critical roles of semi-conductive LaFeO3 coating in enhancing cycling stability and rate capability of 5V LiNi0.5Mn1.5O4 cathode materials. Electrochim Acta 260:101–111

    Article  CAS  Google Scholar 

  22. Bi Z, Zhao N, Ma L, Shi C, Fu Z, Xu F, Guo X (2020) Surface coating of LiMn2O4 cathodes with garnet electrolytes for improving cycling stability of solid lithium batteries. J Mater Chem A 8:4252–4256

    Article  CAS  Google Scholar 

  23. Xia H, Luo Z, Xie J (2012) Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries. Prog Nat Sci: Mater Int 22(6):572–584

    Article  Google Scholar 

  24. Jiang S, Wang S, Li Y, Hao S, Xi X, Liu S, Xiong Y, Zheng J, Zhang P (2022) Structure and interface modification via Gd boosting excellent high-temperature electrochemical performance of LiMn2O4. Mater Today Energy 29:101096

    Article  CAS  Google Scholar 

  25. Park SC, Kim YM, Kang YM, Kim KT, Lee PS, Lee JY (2001) Improvement of the rate capability of LiMn2O4 by surface coating with LiCoO2. J Power Sources 103:86–92

    Article  CAS  Google Scholar 

  26. Wang GX, Bradhurst DH, Liu HK, Dou SX (1999) Improvement of electrochemical properties of the spinel LiMn2O4 using a Cr dopant effect. Solid State Ion 120:95–101

    Article  CAS  Google Scholar 

  27. Kim KW, Park JH (2023) Structural and electrochemical properties of Cr-substituted lithium manganese oxide thin films. J Sol Gel Sci Technol 106:775–781

    Article  CAS  Google Scholar 

  28. Chen L, Li Z, Zhang P, Tian P, Yuan J, Zheng W (2023) Effect of PAA on the structure and transmittance of hollow spherical SiO2 film prepared by sol-gel method. Ceram Int 49:6805–6810

    Article  CAS  Google Scholar 

  29. Taniguchi I, Fukuda N, Konarova M (2008) Synthesis of spherical LiMn2O4 microparticles by a combination of spray pyrolysis and drying method. Powder Technol 181:228–236

    Article  CAS  Google Scholar 

  30. Xu W, Guo S, Li Q, Xia S, Cheng F, Sui F, Qi R, Cao Y, Huang R (2024) Cobalt doped spinel LiMn2O4 cathode toward high-rate performance lithium-ion batteries. Vacuum 219:112724

    Article  CAS  Google Scholar 

  31. Amutha T, Rameshbabu M, Muthupandi S, Prabha K (2022) Theoretical comparison of lattice parameter and particle size determination of pure tin oxide nanoparticles from powder X-ray diffraction. Mater Today Proc 49:2624–2627

    Article  CAS  Google Scholar 

  32. Cupid DM, Lehmann T, Bergfeldt T, Berndt H, Seifert HJ (2013) Investigation of the Lithium-rich boundary of the Li1+xMn2-xO4 cubic spinel phase in air. J Mater Sci 48:3395–3403

    Article  CAS  Google Scholar 

  33. Shi RJ, Zhou T, Zhou Y, Xie XY, Wang T, Ma ZY, Tang PY, Huang XP, Jiang JB (2024) Doping Mg2+ to improve the Li+ diffusion rate and electrochemical performance of spinel LiMn2O4. Solid State Ion 404:116434

    Article  CAS  Google Scholar 

  34. Li B, Wang M, Zhang Y, Guo Q, Tian RN, Chen J, Wang D, Dong C, Mao Z (2023) Strengthening reversibility at high rate of spinel LiMn2O4 by aluminum and copper Co-doping for lithium ion battery. Electrochim Acta 464:142898

    Article  CAS  Google Scholar 

  35. Amdouni N, Zaghib K, Gendron F, Mauger A, Julien CM (2006) Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry. Ionics 12:117–126

    Article  CAS  Google Scholar 

  36. Taddesse P, Tsona C, Murali N, Babu KV (2021) Effect of Ni and Fe substitution on the thermal, structural, vibrational spectroscopic and electrochemical properties of LiMn2O4 cathode material. Sci Afr 14:e00975

    CAS  Google Scholar 

  37. Gu J, Chen L, Li X, Luo G, Fan L, Chao Y, Ji H, Zhu W (2024) Multifunctional AlPO4 reconstructed LiMn2O4 surface for electrochemical lithium extraction from brine. J Energy Chem 89:410–421

    Article  CAS  Google Scholar 

  38. Zhang G, Zhang P, Kong S, Jin B (2023) Spinel LiMn2O4 as electrocatalyst toward solid-state zinc-air batteries. Catalysts 13:860

    Article  Google Scholar 

  39. Molenda M, Dziembaj R, Podstawka E, Proniewicz LM (2005) Changes in local structure of lithium manganese spinels (Li:Mn = 1:2) characterized by XRD, DSC, TGA, IR, and Raman spectroscopy. J Phys Chem Solids 66:1761–1768

    Article  CAS  Google Scholar 

  40. Kim KJ, Koh TY, Park JH, Park JY (2017) Effects of Octahedral Ni2+ on structural and transport properties of NixFe3-xO4 thin films. J Magn 22(3):360–363

    Article  Google Scholar 

  41. Chudzik K, Lis M, Swietoslawski M, Bakierska M, Gajewska M, Molenda M (2019) Improving the performance of sulphur doped LiMn2O4 by carbon coating. J Power Sources 434:226725

    Article  CAS  Google Scholar 

  42. Kamarulzaman N, Yusoff R, Kamarudin N, Shaari NH, Abdul Aziz NA, Bustam MA, Blagojevic N, Elcombe M, Blackford M, Avdeev M, Arof AK (2009) Investigation of cell parameters, microstructures and electrochemical behaviour of LiMn2O4 normal and nano powders. J Power Sources 188:274–280

    Article  CAS  Google Scholar 

  43. Ernst FO, Kammler HK, Roessler A, Pratsinis SE, Stark WJ, Ufheil J, Novak P (2007) Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8. Mater Chem Phys 101:372–378

    Article  CAS  Google Scholar 

  44. Normakhmedov OO, Brylev OA, Petukhov DI, Kurilenko KA, Kulova TL, Tuseeva EK, Skundin AM (2018) Cryochemically processed Li1+yMn1.95Ni0.025Co0.025O4 (y = 0, 0.1) cathode materials for Li-ion batteries. Materials 11(7):1162

    Article  PubMed  PubMed Central  Google Scholar 

  45. Luo G, Zhu L, Li X, Zhou G, Sun J, Chen L, Chao Y, Jiang L, Zhu W (2022) Electrochemical lithium ions pump for lithium recovery from brine by using a surface stability Al2O3-ZrO2 coated LiMn2O4 electrode. J Energy Chem 69:244–252

    Article  CAS  Google Scholar 

  46. Zeng C, Chen J, Yang H, Yang A, Cui C, Zhang Y, Li X, Gui S, Wei Y, Feng X, Xu X, Xiao P, Liang J, Zhai T, Cui Y, Li H (2022) Visualizing fast interlayer anisotropic lithium diffusion via single crystal microbattery. Matter 5(11):4015–4028

    Article  CAS  Google Scholar 

  47. Lovett AJ, Daramalla V, Sayed FN, Nayak D, de h-Ora M, Grey CP, Dutton SE, MacManus-Driscoll JL (2023) Low temperature Epitaxial LiMn2O4 cathodes enabled by NiCo2O4 current collector for high-performance microbatteries. ACS Energy Lett 8:3437–3442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cai Z, Ma Y, Huang X, Yan X, Yu Z, Zhang S, Song G, Xu Y, Wen C, Yang W (2020) High electrochemical stability Al-doped spinel LiMn2O4 cathode material for Li-ion batteries. J Energy Storage 27:101036

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Konkuk University, Seoul, South Korea.

Author contributions

All authors reviewed the manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongho Park.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Kim, K.J. Improved electrochemical performance of Li-excessive LiMn2O4 cathode for secondary batteries. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06403-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06403-y

Keywords

Navigation