Skip to main content
Log in

Effect of particle size in Li4Ti5O12 (LTO)-LiMn2O4 (LMO) batteries: a numerical simulation study

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Multiscale numerical simulations based on the porous-electrode theory developed by Newman et al. have been carried out in COMSOL 5.4 environment for different particle sizes (PS) of LiMn2O4 cathode material in Li4Ti5O12 (LTO)-LiMn2O4 (LMO) batteries. The electrolyte used in the simulations was 1.2 M LiPF6 in a 3:7 wt % mixture of ethyl carbonate (EC) and ethyl methyl carbonate (EMC). The model has been validated against experimental data from the literature for half cells (LTO-Li and LMO-Li) and full LTO-LMO cells. A multiple-material model has been adapted to describe an LMO cathode as a material blend with two PS (100 and 1000 nm radii), representing a binary PS distribution (PSD) within the material. The simulation results show that larger populations of small particles at constant cathode material load and constant current density over the electroactive area can effectively allow for larger currents to be applied due to the compensating larger active surface area per unit volume, which decreased the local current density at the LMO crystal interface with the electrolyte. However, higher overpotentials were obtained for cells with higher proportions of small particles, meaning that there is a compromise between electrical work output and C-rate. These findings highlight the importance of microstructure and PS in battery design, particularly in the LTO-LMO system

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

taken from reference [37]) and the simulated curve obtained in this work (solid line)

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\({\mathrm{A}}_{\mathrm{c}}\) :

Cell cross-sectional area

\({a}\)  :

Electrode interfacial specific surface area (per unit volume)

\({{\alpha }}_{{a}}\)  :

Anodic transfer coefficient

\({\alpha }_{c}\)  :

Cathodic transfer coefficient

\({\upbeta }_{pos}\)  :

Bruggeman coefficient for tortuosity in positive electrode

\({\upbeta }_{sep}\)  :

Bruggeman coefficient for tortuosity in separator

\({{c}}_{{l}{ref}}\)  :

Reference lithium salt concentration

\({{c}}_{{l}}\)  :

Lithium salt concentration in the electrolyte

\({{c}}_{{l}}^{0}\)  :

Initial electrolyte salt concentration

\({{c}}_{{s},{max}}\)  :

Maximum possible lithium concentration in the solid matrix

\({{c}}_{{s}}\)  :

Lithium concentration in the solid matrix

\({D}_{l}\)  :

Lithium’s diffusion coefficient in the electrolyte

\({D}_{s}\)  :

Lithium’s diffusion coefficient in the solid active material

\({D}_{{s}}^{{neg}}\)  :

Lithium’s diffusion coefficient in the negative electrode material

\({D}_{{s}}^{{pos}}\)  :

Lithium’s diffusion coefficient in the positive electrode material

\({E}_{{eq}}\)  :

Equilibrium potential

\({\upepsilon }_{{l},{neg}}\)  :

Electrolyte phase volume fraction negative electrode

\({\upepsilon }_{{l},{pos}}\)  :

Electrolyte phase volume fraction positive electrode

\({\upepsilon }_{\mathrm{l},\mathrm{pos}}\) :

Electrolyte phase volume fraction positive electrode

\({\upepsilon }_{{l}}\)  :

Electrolyte-phase volume fraction

\({\upepsilon }_{{s},{pos},{LMO}}\)  :

Solid phase volume fraction LMO positive electrode

\({\upepsilon }_{{s},{pos},{lmo}}\)  :

Solid phase volume-fraction lmo positive electrode

\({\upepsilon }_{{s},{pos}}\)  :

Solid phase volume fraction of active material mix, positive electrode

\({\upepsilon }_{{s}}\)  :

Solid-phase volume fraction

\({\upepsilon }_{{sep}}\)  :

Electrolyte phase volume fraction separator

\(\mathrm{F}\) :

Faraday’s constant

\({{fr}}_{{pos},{lmo}}\)  :

Mass fraction of lmo in lmo/LMO mix

\({\upphi }_{{l}}\)  :

Electrolyte electric potential

\({\upphi }_{{s}}\)  :

Solid-phase electric potential

\({{i}}_{{l}}\)  :

Current in the electrolyte

\({{i}}_{{s}}\)  :

Current in the solid phase

\({{j}}_{{n}}\)  :

Pore-wall current density across the active material/electrolyte interface, averaged over the interfacial area

\(k_{a}\)  :

Anodic reaction rate constant

\({k}_{c}\)  :

Cathodic reaction rate constant

\(k_{neg}\)  :

Reaction rate coefficient active material negative electrode

\({{k}}_{{pos},{LMO}}\)  :

Reaction rate coefficient LMO positive electrode

\({{k}}_{{pos},{lmo}}\)  :

Reaction rate coefficient lmo positive electrode

\({\mathrm{k}}_{\mathrm{pos}}\)  :

Reaction rate coefficient LMO positive electrode

\({\mathrm{L}}_{\mathrm{neg}}\) :

Thickness of negative electrode

\({\mathrm{L}}_{\mathrm{pos}}\) :

Thickness of positive electrode

\({\mathrm{L}}_{\mathrm{sep}}\) :

Thickness of separator

\(\mathrm{R}\) :

Universal gas constant

\({\mathrm{r}}_{\mathrm{p}}\) :

Active material particle radius

\(\mathrm{r}\) :

Radial distance measured from the center of the particle

\({\mathrm{rp}}_{\mathrm{neg}}\) :

Particle radius active material negative electrode

\({\mathrm{rp}}_{\mathrm{pos},\mathrm{LMO}}\) :

Particle radius LMO positive electrode

\({\mathrm{rp}}_{\mathrm{pos},\mathrm{lmo}}\) :

Particle radius lmo positive electrode

\({\mathrm{rp}}_{\mathrm{pos}}\) :

Particle radius LMO positive electrode

\({\uprho }_{{p}}\)  :

Positive electrode density

\({{SOC}}_{{cell}0}\)  :

Initial cell state-of-charge

\({\upsigma }_{{l}}\)  :

Electrolyte ionic conductivity

\({\upsigma }_{{l}}^{{eff}}\)  :

Electrolyte effective ionic conductivity

\({\upsigma }_{{s}}\)  :

Solid-phase electric conductivity

\({\upsigma }_{{s}}^{{neg}}\)  :

Negative electrode electric conductivity

\({\upsigma }_{{s}}^{{pos}}\)  :

Positive electrode electric conductivity

\({{t}}_{+}^{0}\)  :

Lithium ion transport number

\(t\)  :

Time

\(T\)  :

Temperature

References

  1. Held A, Boßmann T, Ragwitz M (2017) Challenges and appropriate policy portfolios for (almost) mature renewable electricity technologies. Energy Environ 28:34–53

    Article  Google Scholar 

  2. Scrosati B, Garche J (2010) Lithium batteries: Status, prospects and future. J Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  3. Ozawa K (1994) Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 69:212–221

    Article  CAS  Google Scholar 

  4. Karden E, Ploumen S, Fricke B et al (2007) Energy storage devices for future hybrid electric vehicles. J Power Sources 168:2–11

    Article  CAS  Google Scholar 

  5. Marom R, Amalraj SF, Leifer N et al (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21:9938–9954

    Article  CAS  Google Scholar 

  6. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  7. Peled E (1983) Film forming reaction at the lithium/electrolyte interface. J Power Sources 9:253–266

    Article  CAS  Google Scholar 

  8. Peled E, Menkin S (2017) Review—SEI: Past, Present and Future. J Electrochem Soc 164:A1703–A1719

    Article  CAS  Google Scholar 

  9. Betz J, Bieker G, Meister P et al (2019) Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv Energy Mater 9:1803170

    Article  CAS  Google Scholar 

  10. Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206

    Article  CAS  PubMed  Google Scholar 

  11. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  PubMed  Google Scholar 

  12. Du Pasquier A, Huang CC, Spitler T (2009) Nano Li4Ti5O12-LiMn2O4 batteries with high power capability and improved cycle-life. J Power Sources 186:508–514

    Article  CAS  Google Scholar 

  13. Martha SK, Haik O, Borgel V et al (2011) Li4Ti5O12/LiMnPO4 lithium-ion battery systems for load leveling application. J Electrochem Soc 158:A790

    Article  CAS  Google Scholar 

  14. Zaghib K, Simoneau M, Armand M, Gauthier M (1999) Electrochemical study of Li 4 Ti 5 O 12 as negative electrode for Li-ion polymer rechargeable batteries 300–305

  15. Du Pasquier A (1999) Mechanism for Limited 55°C Storage Performance of Li[sub 1.05]Mn[sub 1.95]O[sub 4] Electrodes. J Electrochem Soc 146:428

  16. Kumagai N, Komaba S, Kataoka Y, Koyanagi M (2000) Electrochemical behavior of graphite electrode for lithium ion batteries in Mn and Co additive electrolytes. Chem Lett 1154–1155

  17. Winter M, Besenhard JO, Spahr ME, Novák P (1998) Insertion Electrode Materials for Rechargeable Lithium Batteries. Adv Mater 10:725

    Article  CAS  Google Scholar 

  18. Mori S, Asahina H, Suzuki H et al (1997) Chemical properties of various organic electrolytes for lithium rechargeable batteries 1. Characterization of passivating layer formed on graphite in alkyl carbonate solutions 68:59–64

    CAS  Google Scholar 

  19. Chu AC (1997) Electrochemistry of highly ordered pyrolytic graphite surface film formation observed by atomic force microscopy. J Electrochem Soc 144:4161

    Article  CAS  Google Scholar 

  20. Inaba M, Siroma Z, Kawatate Y et al (1997) Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate. J Power Sources 68:221–226

    Article  CAS  Google Scholar 

  21. Kavan L, Procházka J, Spitler TM et al (2003) Li Insertion into Li[sub 4]Ti[sub 5]O[sub 12] (Spinel). J Electrochem Soc 150:A1000

    Article  CAS  Google Scholar 

  22. Wang GX, Bradhurst DH, Dou SX, Liu HK (1999) Spinel Li[Li1/3Ti5/3]O4 as an anode material for lithium ion batteries. J Power Sources 83:156–161

    Article  CAS  Google Scholar 

  23. Amatucci G, Du Pasquier A, Blyr A et al (1999) The elevated temperature performance of the LiMn2O4/C system: failure and solutions. Electrochim Acta 45:255–271

    Article  CAS  Google Scholar 

  24. Ferg E (1994) Spinel anodes for lithium-ion batteries. J Electrochem Soc 141:L147

    Article  CAS  Google Scholar 

  25. Thackeray MM (1995) Lithiated oxides for lithium ion batteries. J Electrochem Soc 142:2558–2563

    Article  CAS  Google Scholar 

  26. Ohzuku T (1995) Zero-strain insertion material of Li[Li[sub 1∕3]Ti[sub 5∕3]]O[sub 4] for rechargeable lithium cells. J Electrochem Soc 142:1431

    Article  CAS  Google Scholar 

  27. Nordh T (2014) Lithium titanate as anode material in lithium- ion batteries. Uppsala University

  28. Chung D, Shearing PR, Brandon NP et al (2014) Particle size polydispersity in Li-ion batteries. J Electrochem Soc 161:422–430

    Article  CAS  Google Scholar 

  29. Vu A, Qian Y, Stein A (2012) Porous electrode materials for lithium-ion batteries – how to prepare them and what makes them special. Adv Energy Mater 2:1056

    Article  CAS  Google Scholar 

  30. Smith M, García RE, Horn QC (2009) The effect of microstructure on the galvanostatic discharge of graphite anode electrodes in LiCoO2-based rocking-chair rechargeable batteries the effect of microstructure on the galvanostatic discharge of graphite anode electrodes in LiCoO2-based rockin. J Electrochem Soc 156:A896–A904

    Article  CAS  Google Scholar 

  31. Arico AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366

    Article  CAS  PubMed  Google Scholar 

  32. Kim DK, Muralidharan P, Lee H et al (2008) Spinel LiMn2O4 nanorods as lithium ion. Nano Lett 8:3948–3952

    Article  CAS  PubMed  Google Scholar 

  33. Sinha NN, Munichandraiah N (2009) The effect of particle size on performance of cathode materials of Li-ion batteries. J Indian Inst Sci 89:381–392

    CAS  Google Scholar 

  34. Fuller TF, Doyle M, Newman J (1994) Simulation and optimization of the dual lithium ion insertion cell. J Electrochem Soc 141:1–10

    Article  CAS  Google Scholar 

  35. Doyle M, Newman J, Gozdz AS et al (1996) Comparison of modeling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc 143:1890–1903

    Article  Google Scholar 

  36. Doyle M (1993) Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc 140:1526

    Article  CAS  Google Scholar 

  37. Doyle M (1995) Design and simulation of lithium rechargeable batteries. University of California

  38. De S, Northrop PWC, Ramadesigan V, Subramanian VR (2013) Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density. J Power Sources 227:161–170

    Article  CAS  Google Scholar 

  39. Ramadesigan V, Methekar RN, Latinwo F et al (2010) Optimal porosity distribution for minimized ohmic drop across a porous electrode. J Electrochem Soc 157:A1328

    Article  CAS  Google Scholar 

  40. Tran TD, Feikert JH, Pekala RW, Kinoshita K (1996) Rate effect on lithium-ion graphite electrode performance. J Appl Electrochem 26:1161–1167

    Article  CAS  Google Scholar 

  41. Darling R, Newman J (1997) Modeling a porous intercalation electrode with two characteristic particle sizes. J Electrochem Soc 144:4201–4208

    Article  CAS  Google Scholar 

  42. Taleghani ST, Marcos B, Zaghib K, Lantagne G (2017) A study on the effect of porosity and particles size distribution on li-ion battery performance. J Electrochem Soc 164:E3179–E3189

    Article  CAS  Google Scholar 

  43. Srinivasan V, Newman J (2004) Discharge model for the lithium iron-phosphate electrode. J Electrochem Soc 151:A1517

    Article  CAS  Google Scholar 

  44. Albertus P, Christensen J, Newman J (2009) Experiments on and modeling of positive electrodes with multiple active materials for lithium-ion batteries. J Electrochem Soc 156:A606

    Article  CAS  Google Scholar 

  45. Newman J, Thomas-Alyea K (2004) Electrochemical systems, 3rd edn. Wiley, Hoboken, NJ

    Google Scholar 

  46. Belharouak I, Sun Y-K, Lu W, Amine K (2007) On the safety of the Li[sub 4]Ti[sub 5]O[sub 12]∕LiMn[sub 2]O[sub 4] lithium-ion battery system. J Electrochem Soc 154:A1083

    Article  CAS  Google Scholar 

  47. Abraham DP, Kawauchi S, Dees DW (2008) Modeling the impedance versus voltage characteristics of LiNi0.8Co0.15Al0.05O2. Electrochim Acta 53:2121–2129

    Article  CAS  Google Scholar 

  48. Kashkooli AG, Lui G, Farhad S et al (2016) Nano-particle size effect on the performance of Li4Ti5O12 spinel. Electrochim Acta 196:33–40

    Article  CAS  Google Scholar 

  49. Thackeray MM (1997) Manganese oxides for lithium batteries. Prog Solid State Chem 25:1–71

    Article  CAS  Google Scholar 

  50. WebPlotDigitizer. https://automeris.io/WebPlotDigitizer/

  51. Fuller TF, Doyle M, Newman J (1994) Relaxation phenomena in lithium-ion-insertion cells. J Electrochem Soc 141:982–990

    Article  CAS  Google Scholar 

  52. Snyder C (2016) The effects of charge/discharge rate on capacity fade of lithium ion batteries. Rensselaer Polytechnic Institute

  53. Li Y, El Gabaly F, Ferguson TR et al (2014) Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. Nat Mater 13:1149–1156

    Article  CAS  PubMed  Google Scholar 

  54. Marchini F, Williams FJ, Calvo EJ (2018) Electrochemical impedance spectroscopy study of the LixMn2O4 interface with natural brine. J Electroanal Chem 819:428–434

    Article  CAS  Google Scholar 

  55. Kim SW, Il PS (2002) Analysis of cell impedance measured on the LiMn2O4 film electrode by PITT and EIS with Monte Carlo simulation. J Electroanal Chem 528:114–120

    Article  CAS  Google Scholar 

  56. COMSOL Multiphysics v 5.4 (2018) Lithium-ion battery with multiple intercalating electrode materials user’s guide. Batter Fuel Cells Modul

Download references

Acknowledgements

W.R.T, A.Y.T, and E.J.C. are Permanent Research Fellows of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). A.R. acknowledges a Peruilh doctoral fellowship. Funding from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and Universidad de Buenos Aires are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Calvo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1383 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozenblit, A., Torres, W.R., Tesio, A.Y. et al. Effect of particle size in Li4Ti5O12 (LTO)-LiMn2O4 (LMO) batteries: a numerical simulation study. J Solid State Electrochem 25, 2395–2408 (2021). https://doi.org/10.1007/s10008-021-05020-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05020-x

Keywords

Navigation