Skip to main content
Log in

Lanthanum sulfide-manganese sulfide/graphene oxide (La2S3-MnS/GO) composite thin film as an electrocatalyst for oxygen evolution reactions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, the lanthanum sulfide-manganese sulfide (La2S3-MnS) nanosheet composite films with different thicknesses were grown on graphene oxide (GO) (LMS/GO) coated stainless steel substrate using binder-free successive ionic layer adsorption and reaction (SILAR) method, for the first time. The formation of crystal structure and chemical states was identified using X-ray diffraction analysis and X-ray photoelectron spectroscopy, respectively. The nitrogen sorption analysis showed the micro-/mesoporous structure of La2S3-MnS-90/GO thin film exhibiting a specific surface area of 170 m2 g-1 and hydrophilic nature. The scanning electron microscopic image showed microstructure with porous ultrathin interconnected nanosheets. Surface texture was examined using transmission electron microscopy. The resulting La2S3-MnS-90/GO thin film electrocatalyst showed oxygen evolution reaction (OER) overpotential as low at 263 mV to reach 10 mA cm-2 current density with Tafel slope of 48 mV dec-1 for in 1 M KOH solution and stability over 50 h. Consequently, it could be considered one of the alternate sulfide-based catalysts for highly efficient OER evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bosch J, Staffell I, Hawkes AD (2018) Temporally explicit and spatially resolved global offshore wind energy potentials. Energy 163:766–781

    Article  Google Scholar 

  2. Khalate SA, Kate RS, Deokate RJ (2018) A review on energy economics and the recent research and development in energy and the Cu2ZnSnS4 (CZTS) solar cells: A focus towards efficiency. Sol Energy 169:616–633

    Article  CAS  Google Scholar 

  3. Ray C, Lee SC, Jin B, Kundu A, Park JH, Jun SC (2018) Conceptual design of three-dimensional CoN/Ni3N-coupled nanograsses integrated on N-doped carbon to serve as efficient and robust water splitting electrocatalysts. J Mater Chem A 6(10):4466–4476

    Article  CAS  Google Scholar 

  4. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303

    Article  CAS  PubMed  Google Scholar 

  5. Long X, Lin H, Zhou D, An Y, Yang S (2018) Enhancing full water-splitting performance of transition metal bi-functional electrocatalysts in alkaline solutions by tailoring CeO2-transition metal oxides-Ni nanointerfaces. ACS Energy Lett 3(2):290–296

    Article  CAS  Google Scholar 

  6. Hu C, Zhang L, Zhao Z, Li A, Chang X, Gong J (2018) Synergism of geometric construction and electronic regulation: 3D Se-(NiCo)Sx/(OH)x nanosheets for highly efficient overall water splitting. Adv Mater 30(12):1705538–1705545

    Article  Google Scholar 

  7. Pandey S, Vishal V, Chaudhuri A (2018) Geothermal reservoir modeling in a coupled thermo-hydro-mechanical-chemical approach: a review. Earth Sci Rev 185:1157–1169

    Article  CAS  Google Scholar 

  8. Kale SB, Bhardwaj A, Lokhande VC, Lee DM, Kang SH, Kim JH, Lokhande CD (2021) Amorphous cobalt-manganese sulfide electrode for efficient water oxidation: meeting the fundamental requirements of an electrocatalyst. Chem Eng J 405:126993–1269104

    Article  CAS  Google Scholar 

  9. Yan H, Xie Y, Wu A, Cai Z, Wang L, Tian C, Zhang X, Fu H (2019) Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv Mater 31(23):1901174–1901182

    Article  Google Scholar 

  10. Liang K, Yan Y, Guo L, Marcus K, Li Z, Zhou L, Li Y, Ye R, Orlovskaya N, Sohn Y, Yang Y (2017) Strained W(SexS1–x)2 nanoporous films for highly efficient hydrogen evolution. ACS Energy Lett 2(6):1315–1320

    Article  CAS  Google Scholar 

  11. Hao S, Yang Y (2017) Water splitting in near-neutral media: using an Mn-Co-based nanowire array as a complementary electrocatalyst. J Mater Chem A 5(24):12091–12095

    Article  CAS  Google Scholar 

  12. Zhang X, Si C, Guo X, Kong R, Qu F (2017) MnCo2S4 nanowire array as an earth-abundant electrocatalyst for efficient oxygen evolution reaction under alkaline conditions. J Mater Chem A 5(33):17211–17215

    Article  CAS  Google Scholar 

  13. Tian T, Gao H, Zhou X, Zheng L, Wu J, Li K, Ding Y (2018) Study of the active sites in porous nickel oxide nanosheets by manganese modulation for enhanced oxygen evolution catalysis. ACS Energy Lett 3(9):2150–2158

    Article  CAS  Google Scholar 

  14. Miao R, He J, Sahoo S, Luo Z, Zhong W, Chen S, Guild C, Jafari T, Dutta B, Cetegen S, Wang M, Alpay S, Suib S (2017) Reduced graphene oxide supported nickel-manganese-cobalt spinel ternary oxide nanocomposites and their chemically converted sulfide nanocomposites as efficient electrocatalysts for alkaline water splitting. ACS Catal 7(1):819–832

    Article  CAS  Google Scholar 

  15. Wang Y, Fu J, Zhang Y, Li M, Hassan F, Li G, Chen Z (2017) Continuous fabrication of MnS/Co nanofibrous air electrode for wide integration of rechargeable Zinc-air battery. Nanoscale 9(41):15865–15872

    Article  CAS  PubMed  Google Scholar 

  16. Li H, Chen S, Zhang Y, Zhang Q, Jia X, Zhang Q, Gu L, Sun X, Song L, Wang X (2018) Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat Commun 9(1):2452–2463

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang S, Sun Y, Liao F, Shen Y, Shi H, Shao M (2018) Co9S8-CuSFeS trimetal sulfides for excellent oxygen evolution reaction electrocatalysis. Electrochim Acta 283:1695–1701

    Article  CAS  Google Scholar 

  18. Chai Y, Shang X, Liu Z, Dong B, Han G, Gao W, Chi J, Yan K, Liu C (2018) Ripple-like NiFeCo sulfides on nickel foam derived from in-situ sulfurization of precursor oxides as efficient anodes for water oxidation. Appl Surf Sci 428:370–376

    Article  CAS  Google Scholar 

  19. Sumboja A, Chen J, Zong Y, Lee P, Liu Z (2017) NiMn layered double hydroxides as efficient electrocatalysts for the oxygen evolution reaction and their application in rechargeable Zn-air batteries. Nanoscale 9(2):774–780

    Article  CAS  PubMed  Google Scholar 

  20. Li R, Liu Y, Li H, Zhang M, Lu Y, Zhang L, Xiao J, Boehm F, Yan K (2018) One-step synthesis of NiMn-layered double hydroxide nanosheets efficient for water oxidation. Small Methods 3:1800344–1800348

    Article  Google Scholar 

  21. Li J, Xu W, Luo J, Zhou D, Zhang D, Wei L, Xu P, Yuan D (2018) Synthesis of 3D hexagram-like cobalt-manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-Micro Lett 10:1–10

    Article  Google Scholar 

  22. Liu D, Li W, Zheng Y, Cui Z, Yan X, Liu D, Wang J, Zhang Y, Lu H, Bai F, Guo J, Wu X (2018) In situ encapsulating α-MnS into N,S-Codoped nanotube-like carbon as advanced anode material: α→β phase transition promoted cycling stability and superior Li/Na-storage performance in half/full cells. Adv Mater 30(21):1706317–1706325

    Article  Google Scholar 

  23. Riha S, Koegel A, Meng X, Kim I, Cao Y, Pellin M, Elam J, Martinson A (2016) Atomic layer deposition of MnS: phase control and electrochemical applications. ACS Appl Mater Interfaces 8(4):2774–2780

    Article  CAS  PubMed  Google Scholar 

  24. Li G, Zhang D, Qiao Q, Yu Y, Peterson D, Zafar A, Kumar R, Curtarolo S, Hunte F, Shannon S, Zhu Y, Yang W, Cao L (2016) All the catalytic active sites of MoS2 for hydrogen evolution. J Am Chem Soc 138(51):16632–16638

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Wu H, Huang L, Zhao H, Liu Z, Chen X, Liu H, Zhang Y (2018) Hierarchically porous N, S-Codoped carbon-embedded dual phase MnO/MnS nanoparticles for efficient lithium ion storage. Inorg Chem 57:7993–8001

    Article  CAS  PubMed  Google Scholar 

  26. Tian T, Gao H, Zhou X, Zheng LWJ, Li K, Ding Y (2018) Study of the active sites in porous nickel oxide nanosheets by manganese modulation for enhanced oxygen evolution catalysis. ACS Energy Lett 3(9):2150–2158

    Article  CAS  Google Scholar 

  27. Li Q, Xing Z, Wang D, Sun X, Yang X (2016) In situ electrochemically activated CoMn-S@NiO/CC nanosheets array for enhanced hydrogen evolution. ACS Catal 6(5):2797–2801

    Article  CAS  Google Scholar 

  28. Sun T, Wang J, Chi X, Lin Y, Chen Z, Ling X, Qiu C, Xu Y, Song L, Chen W, Su C (2018) Engineering the electronic structure of MoS2 nanorods by N and Mn dopants for ultra-efficient hydrogen production. ACS Catal 8(8):7585–7592

    Article  CAS  Google Scholar 

  29. Tang T, Jiang W, Niu S, Liu N, Luo H, Chen Y, Jin S, Gao F, Wan L, Hu J (2017) Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bi-functional electrocatalysts for overall water splitting. J Am Chem Soc 139(24):8320–8328

    Article  CAS  PubMed  Google Scholar 

  30. Ding X, Yang T, Wei W, Wang Y, Xu K, Zhu Z, Zhao H, Yua T, Zhanga D (2020) In situ grown lanthanum sulfide/molybdenum sulfide hybrid catalyst for electrochemical hydrogen evolution. Catal Sci Technol 10(10):3247–3254

    Article  CAS  Google Scholar 

  31. Mane VJ, Malavekar DB, Ubale SB, Bulakhe RN, In I, Lokhande CD (2020) Binder free lanthanum doped manganese oxide @ graphene oxide composite as high energy density electrode material for flexible symmetric solid state supercapacitor. Electrochim Acta 335:135613–135628

    Article  CAS  Google Scholar 

  32. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135(25):9267–9270

    Article  CAS  PubMed  Google Scholar 

  33. Chen K, Chen L, Chen Y, Bai H, Li L (2012) Three-dimensional porous graphene-based composite materials: electrochemical synthesis and application. J Mater Chem 22(39):20968–20976

    Article  CAS  Google Scholar 

  34. Jana M, Saha S, Samanta P, Murmu N, Kim N, Kuila T, Lee J (2016) Growth of Ni-Co binary hydroxide on a reduced graphene oxide surface by a successive ionic layer adsorption and reaction (SILAR) method for high performance asymmetric supercapacitor electrodes. J Mater Chem A 4(6):2188–2197

    Article  CAS  Google Scholar 

  35. Quan H, Cheng B, Chen D, Su X, Xiao Y, Lei S (2016) One-pot synthesis of α-MnS/nitrogen-doped reduced graphene oxide hybrid for high-performance asymmetric supercapacitors. Electrochim Acta 210:557–566

    Article  CAS  Google Scholar 

  36. Gao M, Liang J, Zheng Y, Xu Y, Jiang J, Gao Q, Li J, Yu S (2015) An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat Commun 6(1):5982–5988

    Article  CAS  PubMed  Google Scholar 

  37. Kulkarni SB, Jamadade VS, Dhawale DS, Lokhande CD (2009) Synthesis and characterization of β-Ni(OH)2 up grown nanoflakes by SILAR method. Appl Surf Sci 255(20):8390–8394

    Article  CAS  Google Scholar 

  38. Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10(4):313–318

    Article  CAS  PubMed  Google Scholar 

  39. Bayram O, Ertargin M, Igman E, Guney H, Simsek O (2018) Synthesis and characterization of Zn-doped Mn3O4 thin films using successive ionic layer adsorption and reaction technique: its structural, optical and wettability properties. J Mater Sci Mater Electron 29:9466–9473

    Article  CAS  Google Scholar 

  40. Wang Z, Xiao S, An Y, Long X, Zheng X, Lu X, Tong Y, Yang S (2016) Co(II)1-xCo(0)x/3Mn(III)2x/3S nanoparticles supported on B/N-Codoped mesoporous nanocarbon as a bi-functional electrocatalyst of oxygen reduction/evolution for high-performance Zinc-air batteries. ACS Appl Mater Interfaces 8(21):13348–13359

    Article  CAS  PubMed  Google Scholar 

  41. Lee C, Yun J, Lee S, Jo S, Eom K, Lee D, Joh H, Fuller T (2017) Bi-axial grown amorphous MoSx bridged with oxygen on r-GO as a superior stable and efficient nonprecious catalyst for hydrogen evolution. Sci Rep 7(1):41190–41198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang X, Cao X, Bourgeois L, Guan H, Chen S, Zhong Y, Tang D, Li H, Zhai T, Li L, Bando Y, Golberg D (2012) N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv Funct Mater 22(13):2682–2690

    Article  CAS  Google Scholar 

  43. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758

    Article  CAS  PubMed  Google Scholar 

  44. Gunjakar JL, Kim IY, Hwang SJ (2014) Efficient hybrid-type CO2 adsorbents of reassembled layered double hydroxide 2D nanosheets with polyoxometalate 0D nanoclusters. Eur J Inorg Chem 2015:1198–1202

    Article  Google Scholar 

  45. Luo J, Im J, Mayer M, Schreier M, Nazeeruddin M, Park N, Tilley S, Fan H, Gratzel M (2014) Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345(6204):1593–1596

    Article  CAS  PubMed  Google Scholar 

  46. Stoerzinger K, Qiao L, Biegalski M, Horn Y (2014) Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J Phys Chem Lett 510:1636–1641

    Article  Google Scholar 

  47. Gunjakar JL, Hou BH, Inamdar AI, Pawar SM, Ahmed AT, Chavan HS, Kim J, Cho S, Lee S, Jo Y, Hwang S, Kim TG, Cha SN, Kim H, Im H (2018) Two dimensional layered hydroxide nanoporous nanohybrids pillared with Zero-dimensional polyoxovanadate nanoclusters for enhanced water oxidation catalysis. Small 14(49):1703481–1703491

    Article  Google Scholar 

  48. Anantharaj S, Ede SR, Sakthikumar K, Karthick K, Mishra S, Kundu S (2016) Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal 6:8069–8097

  49. Kale SB, Lokhande VC, Marje SJ, Patil UM, Kim JH, Lokhande CD (2020) Chemically deposited Co3S4 thin film: morphology dependant electrocatalytic oxygen evolution reaction. Appl Phys A Mater Sci Process 126(3):206–2016

    Article  CAS  Google Scholar 

  50. Pujari RB, Gund GS, Patil SJ, Park HS, Lee DW (2020) Anion-exchange phase control of manganese sulfide for oxygen evolution reaction. J Mater Chem A 8(7):3901–3909

    Article  CAS  Google Scholar 

  51. Kale SB, Lokhande AC, Pujari RB, Lokhande CD (2018) Cobalt sulfide thin films for electrocatalytic oxygen evolution reaction and supercapacitor applications. J Colloid Interface Sci 532:491–499

    Article  CAS  PubMed  Google Scholar 

  52. Wu X, Han X, Ma X, Zhang W, Deng Y, Zhong C, Hu W (2017) Morphology-controllable synthesis of Zn-Co-mixed sulfide nanostructures on carbon fiber paper toward efficient rechargeable Zinc-air batteries and water electrolysis. ACS Appl Mater Interfaces 9(14):12574–12583

    Article  CAS  PubMed  Google Scholar 

  53. Zhu M, Zhang Z, Zhang H, Zhang H, Zhang X, Zhang L, Wang S (2018) Hydrophilic cobalt sulfide nanosheets as a bi-functional catalyst for oxygen and hydrogen evolution in electrolysis of alkaline aqueous solution. J Colloid Interface Sci 509:522–528

    Article  CAS  PubMed  Google Scholar 

  54. Liang H, Shuang W, Zhang Y, Chao S, Han H, Wang X, Zhang H, Yang L (2018) Graphene-like multilayered CuS nanosheets assembled into flower-like microspheres and their electrocatalytic oxygen evolution properties. Chem Electron Chem 5:494–500

    CAS  Google Scholar 

  55. Chauhan M, Reddy K, Gopinath C, Deka S (2017) Copper cobalt sulphide nanosheets realizing promising electrocatalytic oxygen evolution reaction. ACS Catal 7(9):5871–5879

    Article  CAS  Google Scholar 

  56. Liu X,  Liu W,  Ko M,  Park M, Kim M,  Oh P,  Chae S,  Park S,  Casimir A,  Wu G,  Cho J, (2015) Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts. Adv Funct Mater 25(36):5799–5808

Download references

Funding

The authors are thankful to the D.Y. Patil Education Society (Deemed to be University) for the financial support through research project No. DYPES/DU/R&D/3101 dated 03/10/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrkant D. Lokhande.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mane, V.J., Kale, S.B., Ubale, S.B. et al. Lanthanum sulfide-manganese sulfide/graphene oxide (La2S3-MnS/GO) composite thin film as an electrocatalyst for oxygen evolution reactions. J Solid State Electrochem 25, 1775–1788 (2021). https://doi.org/10.1007/s10008-021-04945-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04945-7

Keywords

Navigation