Skip to main content

Advertisement

Log in

SnSe nanosheet hybridized with reduced graphene oxide for enhanced hydrogen revolution reaction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

SnSe with layered structure, as a member of 2D materials and transition metal chalcogenides, is a promising candidate of electrocatalyst for hydrogen evolution. Reduced graphene oxide (RGO) is an excellent substrate of electrocatalyst. In this work, SnSe nanosheets (NSs) had been prepared via liquid exfoliation, and the as-prepared SnSe NSs had been hybridized with RGO by a simple hydrothermal method. The SnSe/RGO hybrid shows superior hydrogen evolution reaction (HER) performance and charge transfer capability than SnSe NSs. In addition, it exhibits a superior HER performance in 1.0 M H2SO4 with overpotential of − 298.79 mV (vs. RHE) at a current density of 10 mA/cm2 and a Tafel slope determined to be only 97.56 mV/dec. Moreover, the SnSe/RGO hybrid as working electrode is provided with excellent durability, which is capable of maintaining working current for 10 h. As demonstrated above, relative high activity and stability and low price make the SnSe/RGO hybrid a promising electrocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

All relevant data supporting the discoveries of this study are contained in this article or its supplementary information files.

References

  1. W. Zhang, K. Zhou, Ultrathin two-dimensional nanostructured materials for highly efficient water oxidation. Small 13, 1700806 (2017)

    Google Scholar 

  2. H. Liu, W. Lei, Z. Tong, X. Li, Z. Wu, Q. Jia, S. Zhang, H. Zhang, Defect engineering of 2D materials for electrochemical energy storage. Adv. Mater. Interfaces 7, 2000494 (2020)

    Google Scholar 

  3. L.S.L. Huijuan, F. Qingliang, Research and application progress of electrochemical sensors based on two-dimensional layered semiconductor materials. Mater. Rep. 36, 20080298–20080210 (2022)

    Google Scholar 

  4. H. Qiao, Z. Huang, X. Ren, S. Liu, Y. Zhang, X. Qi, H. Zhang, Self-powered photodetectors based on 2D materials. Adv. Opt. Mater. 8, 1900765 (2020)

    Google Scholar 

  5. C. Huo, Z. Yan, X. Song, H. Zeng, 2D materials via liquid exfoliation: a review on fabrication and applications. Sci. Bull. 60, 1994–2008 (2015)

    Google Scholar 

  6. H. Qiao, H. Liu, Z. Huang, R. Hu, Q. Ma, J. Zhong, X. Qi, Tunable electronic and optical properties of 2D monoelemental materials beyond graphene for promising applications. Energy Environ. Mater. 4, 522–543 (2021)

    Google Scholar 

  7. G.F.Y. Chen, T. Xiaolong, Y.I. Honghong, M. Leilei, Y. Qingjun, Z. Shunzheng, Review on the synthesis techniques of two-dimensional materials and their application in the field of catalysis. Mater. Rep. 34, 13005–13016 (2020)

    Google Scholar 

  8. Q. Zhou, M. Wang, Y. Li, Y. Liu, Y. Chen, Q. Wu, S. Wang, Fabrication of highly textured 2D SnSe layers with tunable electronic properties for hydrogen evolution. Molecules 26, 3319 (2021)

    Google Scholar 

  9. H. Qiao, H. Liu, Z. Huang, Q. Ma, S. Luo, J. Li, Y. Liu, J. Zhong, X. Qi, Black phosphorus nanosheets modified with au nanoparticles as high conductivity and high activity electrocatalyst for oxygen evolution reaction. Adv. Energy Mater. 10, 2002424 (2020)

    Google Scholar 

  10. H. Qiao, Z. Li, F. Liu, Q. Ma, X. Ren, Z. Huang, H. Liu, J. Deng, Y. Zhang, Y. Liu, X. Qi, H. Zhang, Au Nanoparticle modification induces charge-transfer channels to enhance the electrocatalytic hydrogen evolution reaction of InSe nanosheets. ACS Appl. Mater. Interfaces 14, 2908–2917 (2022)

    Google Scholar 

  11. J. Zhao, J. Wang, Z. Chen, J. Ju, X. Han, Y. Deng, Metal chalcogenides: an emerging material for electrocatalysis. APL Mater. 9, 050902 (2021)

    ADS  Google Scholar 

  12. J. Yin, J. Jin, H. Lin, Z. Yin, J. Li, M. Lu, L. Guo, P. Xi, Y. Tang, C.-H. Yan, Optimized metal chalcogenides for boosting water splitting. Adv. Sci. 7, 1903070 (2020)

    Google Scholar 

  13. S.A. Shah, X. Shen, M. Xie, G. Zhu, Z. Ji, H. Zhou, K. Xu, X. Yue, A. Yuan, J. Zhu, Y. Chen, Nickel@nitrogen-doped carbon@MoS2 nanosheets: an efficient electrocatalyst for hydrogen evolution reaction. Small 15, e1804545 (2019)

    Google Scholar 

  14. Q. Yang, Y. He, Y. Fan, F. Li, X. Chen, Exfoliation of the defect-rich MoS2 nanosheets to obtain nanodots modified MoS2 thin nanosheets for electrocatalytic hydrogen evolution. J. Mater. Sci. 28, 7413–7418 (2017)

    Google Scholar 

  15. Z. Wu, B. Fang, A. Bonakdarpour, A. Sun, D.P. Wilkinson, D. Wang, WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction. Appl. Catal. B 125, 59–66 (2012)

    Google Scholar 

  16. L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, H. Dai, Ultrathin WS2 Nanoflakes as a High-Performance Electrocatalyst for the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 53, 7860–7863 (2014)

    Google Scholar 

  17. D. Damien, A. Anil, D. Chatterjee, M.M. Shaijumon, Direct deposition of MoSe2 nanocrystals onto conducting substrates: towards ultra-efficient electrocatalysts for hydrogen evolution. J. Mater. Chem. A 5, 13364–13372 (2017)

    Google Scholar 

  18. H. Shi, H. Zhang, M. Li, Y. Wang, D. Wang, Nanoflower-like 1T/2H mixed-phase MoSe2 as an efficient electrocatalyst for hydrogen evolution. J. Alloy. Compd. 878, 160381 (2021)

    Google Scholar 

  19. S. Li, Z. Zhao, J. Li, H. Liu, M. Liu, Y. Zhang, L. Su, A.I. Pérez-Jiménez, Y. Guo, F. Yang, Y. Liu, J. Zhao, J. Zhang, L.-D. Zhao, Y. Lin, Mechanically induced highly efficient hydrogen evolution from water over piezoelectric SnSe nanosheets. Small 18, 2202507 (2022)

    Google Scholar 

  20. Z. Feng, C.D. Jadhav, G.P. Patil, Y. Wang, C. Zhang, V.S. Baviskar, Z. Jia, R. Minnes, Solution processed 2D SnSe nanosheets catalysts: temperature dependent oxygen reduction reaction performance in alkaline media. J. Electroanal. Chem. 916, 116381 (2022)

    Google Scholar 

  21. W.-H. Hu, X. Shang, G.-Q. Han, B. Dong, Y.-R. Liu, X. Li, Y.-M. Chai, Y.-Q. Liu, C.-G. Liu, MoSx supported graphene oxides with different degree of oxidation as efficient electrocatalysts for hydrogen evolution. Carbon 100, 236–242 (2016)

    Google Scholar 

  22. K. Wang, S. Wang, K.S. Hui, H. Gao, D.A. Dinh, C. Yuan, C. Zha, Z. Shao, Z. Tang, K.N. Hui, Synergistically boosting the elementary reactions over multiheterogeneous ordered macroporous Mo2C/NC-Ru for highly efficient alkaline hydrogen evolution, carbon. Energy 4, 856–866 (2022)

    Google Scholar 

  23. K. Wang, S. Wang, K.S. Hui, J. Li, C. Zha, D.A. Dinh, Z. Shao, B. Yan, Z. Tang, K.N. Hui, Dense platinum/nickel oxide heterointerfaces with abundant oxygen vacancies enable ampere-level current density ultrastable hydrogen evolution in alkaline. Adv. Funct. Mater. 33, 2211273 (2023)

    Google Scholar 

  24. R. Hou, S. Zhang, Y. Zhang, N. Li, S. Wang, B. Ding, G. Shao, P. Zhang, A “three-region” configuration for enhanced electrochemical kinetics and high-areal capacity lithium-sulfur batteries. Adv. Funct. Mater. 32, 2200302 (2022)

    Google Scholar 

  25. Y. Zhang, Z. Wu, S. Wang, N. Li, S.R.P. Silva, G. Shao, P. Zhang, Complex permittivity-dependent plasma confinement-assisted growth of asymmetric vertical graphene nanofiber membrane for high-performance Li-S full cells. InfoMat 4, e12294 (2022)

    Google Scholar 

  26. L. Luo, C. Liu, Z. Li, L. Zhang, W. Xie, T. Zhang, Z. Chen, Anchoring ultrafine molybdenum phosphide on hierarchical three-dimensional CNTs/rGO framework as efficient electrocatalysts for hydrogen evolution. J. Mater. Sci. 33, 3175–3185 (2022)

    Google Scholar 

  27. L. Ye, Z. Wen, Reduced graphene oxide supporting hollow bimetallic phosphide nanoparticle hybrids for electrocatalytic oxygen evolution. Electrochem. Commun. 83, 85–89 (2017)

    Google Scholar 

  28. A. Sebastian, V. Deepthi, I. Sheebha, B. Vidhya, V. Maheskumar, A. Sakunthala, A comparative study on the electrocatalytic and photocatalytic activity of reduced graphene oxide (rGO) and doped rGO based Cu5FeS4 composite. Int. J. Hydrog. Energy 47, 27541–27554 (2022)

    Google Scholar 

  29. X. Cai, Q. Song, D. Jiao, H. Yu, X. Tan, R. Wang, S. Luo, Bifunctional electrocatalysts of CoFeP/rGO heterostructure for water splitting. Int. J. Hydrog. Energy 47, 39499–39508 (2022)

    Google Scholar 

  30. D. Mukherjee, P.M. Austeria, S. Sampath, Two-dimensional, few-layer phosphochalcogenide, FePS3: a new catalyst for electrochemical hydrogen evolution over wide pH range. ACS Energy Lett. 1, 367–372 (2016)

    Google Scholar 

  31. C. Gong, G. Lee, B. Shan, E.M. Vogel, R.M. Wallace, K. Cho, First-principles study of metal–graphene interfaces. J. Appl. Phys. 108, 123711 (2010)

    ADS  Google Scholar 

  32. H. Qiao, Z. Huang, X. Ren, H. Yao, S. Luo, P. Tang, X. Qi, J. Zhong, Photoresponse improvement in liquid-exfoliated SnSe nanosheets by reduced graphene oxide hybridization. J. Mater. Sci. 53, 4371–4377 (2017)

    ADS  Google Scholar 

  33. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41 (2008)

    ADS  Google Scholar 

  34. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Google Scholar 

  35. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011)

    Google Scholar 

  36. A. Lasia, Mechanism and kinetics of the hydrogen evolution reaction. Int. J. Hydrog. Energy 44, 19484–19518 (2019)

    Google Scholar 

  37. C.-Z. Yuan, K.S. Hui, H. Yin, S. Zhu, J. Zhang, X.-L. Wu, X. Hong, W. Zhou, X. Fan, F. Bin, F. Chen, K.N. Hui, Regulating intrinsic electronic structures of transition-metal-based catalysts and the potential applications for electrocatalytic water splitting. ACS Mater. Lett. 3, 752–780 (2021)

    Google Scholar 

  38. W. Shen, L. Ge, Y. Sun, F. Liao, L. Xu, Q. Dang, Z. Kang, M. Shao, Rhodium nanoparticles/F-doped graphene composites as multifunctional electrocatalyst superior to Pt/C for hydrogen evolution and formic acid oxidation reaction. ACS Appl. Mater. Interfaces 10, 33153–33161 (2018)

    Google Scholar 

  39. D. Han, N. Gao, J. Ge, C. Liu, W. Xing, Activating MoS2 via electronic structure modulation and phase engineering for hydrogen evolution reaction. Catal. Commun. 164, 1046 (2022)

    Google Scholar 

  40. X. Zhang, H. Fei, Z. Wu, D. Wang, A facile preparation of WS2 nanosheets as a highly effective HER catalyst. Tungsten 1, 101–109 (2019)

    Google Scholar 

  41. N. Sen, A. Das, S. Maity, S. Ghosh, M. Samanta, K.K. Chattopadhyay, Tailoring the Sb2Se3/rGO heterointerfaces for modulation of electrocatalytic hydrogen evolution performances in acidic media. ACS Appl. Energy Mater. 6, 58–67 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Grants from Provincial Natural Science Foundation of Hunan (No. 2022JJ30553, 2021JJ40524), Scientific Research Fund of Hunan Provincial Education Department (Nos. 21A0080, 19C1746), Suzhou key industrial technology innovation project (SYG201921), Hunan Key Laboratory of Two-Dimensional Materials (No. 2018TP1010), and Program of Changjiang Scholars and Innovative Research Team in University (IRT-17R91).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to this study. CL contributed to original draft writing, material preparation and electrochemical test. HQ contributed to investigation and writing editing. YL contributed to formal analysis and methodology. ZH contributed to writing—review and administration, SL contributed to characterization test. ZW contributed to investigation. XQ contributed to investigation and writing editing.

Corresponding authors

Correspondence to Hui Qiao or Zongyu Huang.

Ethics declarations

Conflict of interest

The authors indicate that there is no conflict of interest in all aspects of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Qiao, H., Liu, Y. et al. SnSe nanosheet hybridized with reduced graphene oxide for enhanced hydrogen revolution reaction. Appl. Phys. A 129, 426 (2023). https://doi.org/10.1007/s00339-023-06690-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06690-2

Keywords

Navigation