Skip to main content

Advertisement

Log in

Particle size dependence of the electrochemical properties of SrMnO3 supercapacitor electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this letter, we report on the simple process of preparing perovskite oxide SrMnO3 and the studying of the size effect on electrochemical properties for high-performance supercapacitor electrode. The high-crystalline micro-sized and nano-sized perovskite oxide SrMnO3 particles were successfully synthesized by a simple solid-state reaction, followed by a simple size reduction using high-energy ball milling. The electrochemical properties of the SrMnO3 had intriguing results on both sizes of particle, especially when comparing between before and after cycles. After a size reduction, the specific capacitance of the particles increased approximately twofold. Interestingly, the micro-sized SrMnO3 gained ∼500% its initial specific capacitance after 3000 successive cycles due to electrochemical nano-feature activation and oxygen-vacancy production, while the specific capacitance for the nano-sized SrMnO3 remained almost unchanged. Our work suggested a cost-effective and simple technique for high-performance perovskite-based supercapacitor electrodes by achieving the desired performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    Article  CAS  Google Scholar 

  2. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321 (5889):651–652

    Article  CAS  PubMed  Google Scholar 

  3. Nan H, Hu X, Tian H (2019) Recent advances in perovskite oxides for anion-intercalation supercapacitor: a review. Mater Sci Semicond Process 94:35–50

    Article  CAS  Google Scholar 

  4. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22(8):E28–E62

    Article  CAS  PubMed  Google Scholar 

  5. Yuan G, Jin H, Jin Y, Wu L (2018) Hybrids of MnO2 nanoparticles anchored on graphene sheets as efficient sulfur hosts for high-performance lithium sulfur batteries. J Solid State Electrochem 22(3):693–703

    Article  CAS  Google Scholar 

  6. Lu X, Yu M, Wang G, Tong Y, Li Y (2014) Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci 7:2160–2181

    Article  Google Scholar 

  7. Salunkhe RR, Kaneti YV, Yamauchi Y (2017) Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11(6):5293–5308

    Article  CAS  PubMed  Google Scholar 

  8. Zheng S, Xue H, Pang H (2018) Supercapacitors based on metal coordination materials. Coord 373:2–21

    Article  CAS  Google Scholar 

  9. Yang Y, Cheng D, Chen S, Guan Y, Xiong J (2016) Construction of hierarchical NiCo2S4@Ni(OH)2 core-shell hybrid nanosheet arrays on ni foam for high-performance aqueous hybrid supercapacitors. Electrochim Acta 193:116–127

    Article  CAS  Google Scholar 

  10. Bose S, Kuila T, Mishra A, Rajasekar R, Kim N, Lee J (2012) Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J Mater Chem 22(3):767– 784

    Article  CAS  Google Scholar 

  11. Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730

    Article  CAS  Google Scholar 

  12. Dong J, Lu G, Wu F, Xu C, Kang X, Cheng Z (2018) Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors. Appl Surf Sci 427:986–993

    Article  CAS  Google Scholar 

  13. Kalinin SV, Borisevich A, Fong D (2012) Beyond condensed matter physics on the nanoscale: the role of ionic and electrochemical phenomena in the physical functionalities of oxide materials. ACS Nano 6 (12):10423–10437

    Article  CAS  PubMed  Google Scholar 

  14. Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111(40):14925–14931

    Article  CAS  Google Scholar 

  15. George G, Jackson SL, Luo CQ, Fang D, Luo D, Hu D, Wen J, Luo Z (2018) Effect of doping on the performance of high-crystalline SrMnO3 perovskite nanofibers as a supercapacitor electrode. Ceram Int 44(17):21982–21992

    Article  CAS  Google Scholar 

  16. Zhang J, Kong LB, Cai JJ, Luo YC, Kang L (2010) Nanoflake-like cobalt hydroxide/ordered mesoporous carbon composite for electrochemical capacitors. J Solid State Electrochem 14(11):2065–2075

    Article  CAS  Google Scholar 

  17. Gholamrezaei S, Amiri M, Amiri O, Salavati-Niasari M, Moayedi H (2020) Ultrasound-accelerated synthesis of uniform SrMnO3 nanoparticles as water-oxidizing catalysts for water splitting systems. Ultrason Sonochem 62:104899

    Article  CAS  PubMed  Google Scholar 

  18. Doroftei C, Popa PD, Rezlescu E, Rezlescu N (2014) Nanocrystalline SrMnO3 powder as catalyst for hydrocarbon combustion. J Alloys Compd 584:195–198

    Article  CAS  Google Scholar 

  19. Saenrang W, Davidson BA, Maccherozzi F, Podkaminer JP, Irwin J, Johnson RD, Freeland JW, Íñiguez J, Schad JL, Reierson K, Frederick JC, Vaz CAF, Howald L, Kim TH, Ryu S, Mv Veenendaal, Radaelli PG, Dhesi SS, Rzchowski MS, Eom CB (2017) Deterministic and robust room-temperature exchange coupling in monodomain multiferroic BiFeO3 heterostructures. Nat Commun 8(1):1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jeong C, Ryu J, Noh T, Kim YN, Lee H (2013) Structural analysis and electrode performance of Ce doped SrMnO3 synthesised by EDTA citrate complexing process. Adv Appl Ceram 112(8):494–498

    Article  CAS  Google Scholar 

  21. Gujar T, Shinde V, Lokhande C, Kim WY, Jung KD, Joo OS (2007) Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor. Electrochem commun 9(3):504–510

    Article  CAS  Google Scholar 

  22. Ren B, Fan M, Liu Q, Wang J, Song D, Bai X (2013) Hollow NiO nanofibers modified by citric acid and the performances as supercapacitor electrode. Electrochim Acta 92:197–204

    Article  CAS  Google Scholar 

  23. Chen X, Paul R, Dai L (2017) Carbon-based supercapacitors for efficient energy storage. Natl Sci Rev 4(3):453–489

    Article  CAS  Google Scholar 

  24. Hu S, Rajamani R, Yu X (2012) Flexible solid-state paper based carbon nanotube supercapacitor. Appl Phys Lett 100(10):104103

    Article  Google Scholar 

  25. Lei Z, Christov N, Zhao XS (2011) Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy Environ Sci 4:1866–1873

    Article  CAS  Google Scholar 

  26. Qu B, Chen Y, Zhang M, Hu L, Lei D, Lu B, Li Q, Wang Y, Chen L, Wang T (2012) β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors. Nanoscale 4:7810–7816

    Article  CAS  PubMed  Google Scholar 

  27. Han Y, Dai L (2019) Conducting polymers for flexible supercapacitors. Macromol Chem Phys 220(3):1800355

    Article  Google Scholar 

  28. Zhang M, Wang G, Lu L, Wang T, Xu H, Yu C, Li H, Tian W (2018) Improving the electrochemical performances of active carbon-based supercapacitors through the combination of introducing functional groups and using redox additive electrolyte. J Saudi Chem Soc 22(8):908–918

    Article  CAS  Google Scholar 

  29. Ding B, Yu J (2014) Electrospun nanofibers for energy and environmental applications. Springer, Berlin

    Book  Google Scholar 

  30. Mefford JT, Hardin WG, Dai S, Johnston KP, Stevenson KJ (2014) Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat Mater 13:726–732

    Article  CAS  PubMed  Google Scholar 

  31. Arjun N, Pan GT, Yang TC (2017) Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Results Phys 7:920–926

    Article  Google Scholar 

  32. Wilde P, Guther T, Oesten R, Garche J (1999) Strontium ruthenate perovskite as the active material for supercapacitors1Dedicated to Professor W. Vielstich on the occasion of his 75th birthday.1. J Electroanal Chem 461(1):154–160

    Article  CAS  Google Scholar 

  33. Karthick K, Ede SR, Nithiyanantham U, Kundu S (2017) Low-temperature synthesis of SrTiO3 nanoassemblies on DNA scaffolds and their applications in dye-sensitized solar cells and supercapacitors. New J Chem 41:3473–3486

    Article  CAS  Google Scholar 

  34. Liu Y, Dinh J, Tade MO, Shao Z (2016) Design of perovskite oxides as anion-intercalation-type electrodes for supercapacitors: cation leaching effect. ACS Appl Mater Interfaces 8(36):23774–23783

    Article  CAS  PubMed  Google Scholar 

  35. Shao T, You H, Zhai Z, Liu T, Li M, Zhang L (2017) Hollow spherical LaNiO3 supercapacitor electrode synthesized by a facile template-free method. Mater Lett 201:122–124

    Article  CAS  Google Scholar 

  36. Shu Q, Liu J, Zhang J (2005) Solid-state reactions for preparation of SrMnO3 and La0.7.Sr0.3 MnO3. High Temp Mater Process 24(5):269–274

    Article  CAS  Google Scholar 

  37. Chen W, Fan Z, Gu L, Bao X, Wang C (2010) Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. Chem Commun 46:3905–3907

    Article  CAS  Google Scholar 

  38. Khalate SA, Kate RS, Pathan HM, Deokate RJ (2017) Structural and electrochemical properties of spray deposited molybdenum trioxide (a-MoO3) thin films. J Solid State Electrochem 21:2737–2746

    Article  CAS  Google Scholar 

  39. Endo M, Kim YJ, Takeda T, Maeda T, Hayashi T, Koshiba K, Hara H, Dresselhaus MS (2001) Poly(vinylidene chloride)-based carbon as an electrode material for high power capacitors with an aqueous electrolyte. J Electrochem Soc 148(10):A1135

    Article  CAS  Google Scholar 

  40. Qu D, Shi H (1998) Studies of activated carbons used in double-layer capacitors. J Power Sources 74(1):99–107

    Article  CAS  Google Scholar 

  41. Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Nanostructures. J Phys Chem B 109(43):20207– 20214

    Article  CAS  PubMed  Google Scholar 

  42. Lokhande CD, Gujar TP, Shinde VR, Mane R, Han S (2007) Electrochemical supercapacitor application of pervoskite thin films. Electrochem commun 9:1805–1809

    Article  CAS  Google Scholar 

  43. Khajonrit J, Wongpratat U, Kidkhunthod P, Pinitsoontorn S, Maensiri S (2018) Effects of Co doping on magnetic and electrochemical properties of BiFeO3 nanoparticles. J Magn Magn Mater 449:423–434

    Article  CAS  Google Scholar 

  44. Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Substrate Dependent Self-Organization of Mesoporous Cobalt Oxide Nanowires with Remarkable Pseudocapacitance. Nano Lett 12(5):2559–2567

    Article  CAS  PubMed  Google Scholar 

  45. Wang YM, Zhao DD, Zhao YQ, Xu CL, Li HL (2012) Effect of electrodeposition temperature on the electrochemical performance of a Ni(OH)2 electrode. RSC Adv 2:1074–1082

    Article  CAS  Google Scholar 

  46. Wang YM, Zhang X, Guo CY, Zhao YQ, Xu CL, Li HL (2013) Controllable synthesis of 3D NiCo1 oxides with different morphologies for high-capacity supercapacitors. J Mater Chem A 1:13290–13300

    Article  CAS  Google Scholar 

  47. Lang JW, Kong LB, Wu WJ, Liu M, Luo YC, Kang L (2013) A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. J Solid State Electrochem 13:333–340

    Article  Google Scholar 

  48. Lu F, Zhou M, Li W, Weng Q, Li C, Xue Y, Jiang X, Zeng X, Bando Y, Golberg D (2016) Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy 26:313–323

    Article  CAS  Google Scholar 

  49. Aich P, Meneghini C, Tortora L, Siruguri V, Kaushik SD, Fu D, Ray S (2019) Fluorinated hexagonal 4H SrMnO3: a locally disordered manganite. J Mater Chem C 7:3560–3568

    Article  CAS  Google Scholar 

  50. Payne B, Biesinger M, McIntyre N (2009) The study of polycrystalline nickel metal oxidation by water vapour. J Electron Spectrosc Relat Phenom 175(1):55–65

    Article  CAS  Google Scholar 

  51. Karaphun A, Hunpratub S, Putjuso T, Swatsitang E (2015) Characterization and dielectric properties of SrTi1−xMnxO3 ceramics. Jpn J Appl Phys 54(6S1):06FH09

    Article  Google Scholar 

  52. Song W, So SK, Cao L (2001) Angular-dependent photoemission studies of indium tin oxide surfaces. Appl Phys A 72:361– 365

    Article  CAS  Google Scholar 

  53. Lufrano F, Staiti P (2010) Mesoporous carbon materials as electrodes for electrochemical supercapacitors. Int J Electrochem Sci 5:903–916

    CAS  Google Scholar 

  54. Jahromi SP, Pandikumar A, Goh BT, Lim YS, Basirun WJ, Lim HN, Huang NM (2015) Influence of particle size on performance of a nickel oxide nanoparticle-based supercapacitor. RSC Adv 5:14010–14019

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Smart Materials Research Center for IoT supported by NFEC at Gachon University for its instrumental support (SEM). We acknowledge Prof. Dr. Santi Maensiri and AMP research group members especially Ms. Kwunta Siwawongkasem for helpful discussion.

Funding

This research was supported by Korea Basic Institute (National Research facilities and Equipment Center) grant funded by the Ministry of Education (2020R1A6C103A050). This work has been partially supported by the Research Network NANOTEC (RNN) program of the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Higher Education, Science, Research and Innovation (MHESI), Thailand and the Office of Naval Research Global under Grant No. N62909-18-1-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wittawat Saenrang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peerawat Laohana and Nantawat Tanapongpisit contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(225 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laohana, P., Tanapongpisit, N., Kim, S. et al. Particle size dependence of the electrochemical properties of SrMnO3 supercapacitor electrodes. J Solid State Electrochem 25, 1121–1129 (2021). https://doi.org/10.1007/s10008-020-04879-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04879-6

Keywords

Navigation